Skip to main content
Log in

Dynamics in entangled polyethylene melts

  • Regular Article
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)

    Article  ADS  Google Scholar 

  2. F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)

    Google Scholar 

  3. S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, J. Phys. Condens. Mat. 16, R481 (2004)

    Article  ADS  Google Scholar 

  4. C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)

    Article  ADS  Google Scholar 

  5. Y. Li, B.C. Abberton, M. Kröger, W.K. Liu, Polymers 5, 751 (2013)

    Article  Google Scholar 

  6. W. Paul, D.Y. Yoon, G.D. Smith, J. Chem. Phys. 103, 1702 (1995)

    Article  ADS  Google Scholar 

  7. S.K. Nath, F.A. Escobedo, J.J. de Pablo, J. Chem. Phys. 108, 9905 (1998)

    Article  ADS  Google Scholar 

  8. M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)

    Article  Google Scholar 

  9. M. Mondello, G.S. Grest, J. Chem. Phys. 103, 7156 (1995)

    Article  ADS  Google Scholar 

  10. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007)

    Article  Google Scholar 

  11. S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)

    Article  Google Scholar 

  12. M.S. Shell, J. Chem. Phys. 129, 144108 (2008)

    Article  ADS  Google Scholar 

  13. V. Rühle, C. Junghans, Macromol. Theor. Simul. 20 (2011)

  14. J.T. Padding, W.J. Briels, J.-Phys. Condens. Matt. 23, 233101 (2011)

    Article  ADS  Google Scholar 

  15. H. Fukunaga, J.I. Takimoto, M. Doi, J. Chem. Phys. 116, 8183 (2002)

    Article  ADS  Google Scholar 

  16. J.T. Padding, W.J. Briels, J. Chem. Phys. 115, 2846 (2001)

    Article  ADS  Google Scholar 

  17. H.S. Ashbaugh, H.A. Patel, S.K. Kumar, S. Garde, J. Chem. Phys. 122, 104908 (2005)

    Article  ADS  Google Scholar 

  18. X. Guerrault, B. Rousseau, J. Farago, J. Chem. Phys. 121, 6538 (2004)

    Article  ADS  Google Scholar 

  19. L.J. Chen, H.J. Qian, Z.Y. Lu, Z.S. Li, C.C. Sun, J. Phys. Chem. B 110, 24093 (2006)

    Article  Google Scholar 

  20. D. Curcó, C. Alemán, Chem. Phys. Lett. 436, 189 (2007)

    Article  ADS  Google Scholar 

  21. J.T. Padding, W.J. Briels, J. Chem. Phys. 117, 925 (2002)

    Article  ADS  Google Scholar 

  22. J.T. Padding, W.J. Briels, J. Chem. Phys. 118, 10276 (2003)

    Article  ADS  Google Scholar 

  23. L. Liu, J.T. Padding, W.K. den Otter, W.J. Briels, J. Chem. Phys. 138, 244912 (2013)

    Article  ADS  Google Scholar 

  24. W.L. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984)

    Article  Google Scholar 

  25. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  26. S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput. 8, 1459 (2012)

    Article  Google Scholar 

  27. T. Schneider, E. Stoll, Phys. Rev. B 17, 1302 (1978)

    Article  ADS  Google Scholar 

  28. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)

    Article  ADS  Google Scholar 

  29. R.E. Isele-Holder, W. Mitchell, A.E. Ismail, J. Chem. Phys. 137, 174107 (2012)

    Article  ADS  Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  31. M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97, 1990 (1992)

    Article  ADS  Google Scholar 

  32. K.M. Salerno, A. Agrawal, D. Perahia, G.S. Grest, Phys. Rev. Lett. 116, 058302 (2016)

    Article  ADS  Google Scholar 

  33. J. Mei, J.W. Davenport, G.W. Fernando, Phys. Rev. B 43, 4653 (1991)

    Article  ADS  Google Scholar 

  34. G. Milano, F. Müller-Plathe, J. Phys. Chem. B 109, 18609 (2005)

    Article  Google Scholar 

  35. Q. Sun, R. Faller, Comput. Chem. Eng. 29, 2380 (2005)

    Article  Google Scholar 

  36. H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E 28, 221 (2009)

    Article  Google Scholar 

  37. T.W. Sirk, Y.R. Slizoberg, J.K. Brennan, M. Lisal, J.W. Andzelm, J. Chem. Phys. 136, 134903 (2012)

    Article  ADS  Google Scholar 

  38. M. Mondello, G.S. Grest, E.B. Webb III, P. Peczak, J. Chem. Phys. 109, 798 (1998)

    Article  ADS  Google Scholar 

  39. L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994)

    Article  ADS  Google Scholar 

  40. T.A. Witten, S. Milner, Z.G. Wang, Multiphase Macromolecular Syst. (1989)

  41. P. Depa, C. Chen, J.K. Maranas, J. Chem. Phys. 134, 014903 (2011)

    Article  ADS  Google Scholar 

  42. P.K. Depa, J.K. Maranas, J. Chem. Phys. 123, 094901 (2005)

    Article  ADS  Google Scholar 

  43. I.Y. Lyubimov, M.G. Guenza, J. Chem. Phys. 138, 12A546 (2013)

    Article  Google Scholar 

  44. I.Y. Lyubimov, J. McCarty, A. Clark, M.G. Guenza, J. Chem. Phys. 132, 224903 (2010)

    Article  ADS  Google Scholar 

  45. V.A. Harmandaris, K. Kremer, Soft Matter 5, 3920 (2009)

    Article  ADS  Google Scholar 

  46. V.A. Harmandaris, K. Kremer, Macromolecules 42, 791 (2009)

    Article  Google Scholar 

  47. D. Fritz, K. Koschke, V.A. Harmandaris, N.F.A. van der Vegt, K. Kremer, Phys. Chem. Chem. Phys. 13, 10412 (2011)

    Article  Google Scholar 

  48. S. Izvekov, G.A. Voth, J. Chem. Phys. 125, 151101 (2006)

    Article  ADS  Google Scholar 

  49. J.T. Padding, W.J. Briels, J.-Phys. Condens. Matt. 23, 233101 (2011)

    Article  ADS  Google Scholar 

  50. P. Espanol, I. Zuniga, Phys. Chem. Chem. Phys. 13, 10538 (2011)

    Article  Google Scholar 

  51. C.C. Fu, P.M. Kulkarni, M.S. Shell, L.G. Leal, J. Chem. Phys. 139, 094107 (2013)

    Article  ADS  Google Scholar 

  52. A. Davtyan, J.F. Dama, G.A. Voth, H.C. Andersen, J. Chem. Phys. 142, 154104 (2015)

    Article  ADS  Google Scholar 

  53. C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010)

    Article  ADS  Google Scholar 

  54. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics. International series of monographs on physics (Clarendon Press, 1988)

  55. R.S. Hoy, N.C. Karayiannis, Phys. Rev. E 88, 012601 (2013)

    Article  ADS  Google Scholar 

  56. D. Richter, R. Butera, L. Fetters, J. Huang, B. Farago, B. Ewen, Macromolecules 25, 6156 (1992)

    Article  ADS  Google Scholar 

  57. P. Schleger, B. Farago, C. Lartigue, A. Kollmar, D. Richter, Phys. Rev. Lett. 81, 124 (1998)

    Article  ADS  Google Scholar 

  58. K. Kremer, G.S. Grest, in Monte Carlo and molecular dynamics simulations in polymer science, edited by K. Binder (Oxford University Press, New York, 1995), pp. 194

  59. H.P. Hsu, K. Kremer, J. Chem. Phys. 144, 154907 (2016)

    Article  ADS  Google Scholar 

  60. J.F. Vega, S. Rastogi, G.W.M. Peters, H.E.H. Meijer, J. Rheol. 48, 663 (2004)

    Article  ADS  Google Scholar 

  61. V.R. Raju, G.G. Smith, G. Marin, J.R. Knox, W.W. Graessley, J. Polym. Sci. Pol. Phys. 17, 1183 (1979)

    Article  ADS  Google Scholar 

  62. L.J. Fetters, D.J. Lohse, S.T. Milner, W.W. Graessley, Macromolecules 32, 6847 (1999)

    Article  ADS  Google Scholar 

  63. L.J. Fetters, D.J. Lohse, W.W. Graessley, J. Polym. Sci. Pol. Phys. 37, 1023 (1999)

    Article  ADS  Google Scholar 

  64. C. Baig, V.A. Harmandaris, Macromolecules 43, 3156 (2010)

    Article  ADS  Google Scholar 

  65. M. Kröger, S. Hess, Phys. Rev. Lett. 85, 1128 (2000)

    Article  ADS  Google Scholar 

  66. G.C. Berry, T.G. Fox, The Viscosity of Polymers and Their Concentrated Solutions (Springer, 1968)

  67. J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, 1980)

  68. S.T. Milner, T.C.B. McLeish, Phys. Rev. Lett. 81, 725 (1998)

    Article  ADS  Google Scholar 

  69. W.W. Graessley, S.F. Edwards, Polymer 22, 1329 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salerno, K., Agrawal, A., Peters, B. et al. Dynamics in entangled polyethylene melts. Eur. Phys. J. Spec. Top. 225, 1707–1722 (2016). https://doi.org/10.1140/epjst/e2016-60142-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60142-7

Navigation