Skip to main content
Log in

Difference-frequency combs in cold atom physics

  • Regular Article
  • Rydberg Technologies
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow optical frequencies to be measured with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency, f ceo, and the pulse repetition-rate, f rep. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates f ceo by design — specifically tailored for applications in cold atom physics. An f ceo-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fibre technology allow the generation of multiple wavelength outputs. The DFG comb is a convenient tool to both stabilise laser sources and accurately measure optical frequencies in Rydberg experiments and more generally in quantum optics. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Strontium Rydberg states. The DFG technique allows for a compact and robust, passively f ceo stable frequency comb significantly improving reliability in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  2. S.A. Diddams, J. Opt. Soc. Am. B 11, B51 (2010)

    Article  ADS  Google Scholar 

  3. A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, L. Hollberg, Opt. Lett. 30, 667 (2005)

    Article  ADS  Google Scholar 

  4. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015)

    Article  ADS  Google Scholar 

  5. N. Poli, C.W. Oates, P. Gill, G.M. Tino, La Rivista del Nuovo Cimento 36, 555 (2013)

    ADS  Google Scholar 

  6. E.M. Bridge, N.C. Keegan, A.D. Bounds, D. Boddy, D.P. Sadler, M.P.A. Jones, Opt. Express 24, 2281 (2016)

    Article  ADS  Google Scholar 

  7. A. Kumar, P.K. Molony, P.D. Gregory, C.L. Blackley, C.R. Le Sueur, J. Aldegunde, J.M. Hutson, S.L. Cornish, ChemPhysChem 17, 1439 (2016)

    Google Scholar 

  8. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kärtner, U. Morgner, Opt. Express 16, 9739 (2008)

    Article  ADS  Google Scholar 

  9. L. Xu, G. Tempea, A. Poppe, M. Lenzner, Ch. Spielmann, F. Krausz, A. Stingl, K. Ferencz, Appl. Phys. B 65, 151 (1997)

    Article  ADS  Google Scholar 

  10. A. Sell, G. Krauss, R. Scheu, R. Huber, A. Leitenstorfer, Opt. Express 17, 1070 (2009)

    Article  ADS  Google Scholar 

  11. K Tamura, E.P. Ippen, H.A. Haus, L.E. Nelson, Opt. Lett. 18, 1080 (1993)

    Article  ADS  Google Scholar 

  12. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  13. S. Koke, Ch. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Nat. Photon. 4, 462 (2010)

    Article  ADS  Google Scholar 

  14. T. Fuji, A. Apolonski, F. Krausz, Opt. Lett. 29, 632 (2004)

    Article  ADS  Google Scholar 

  15. M. Zimmermann, Ch. Gohle, R. Holzwarth, T. Udem, T.W. Hänsch, Opt. Lett. 29, 310 (2014)

    Article  ADS  Google Scholar 

  16. D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D.V. Seletskiy, A. Leitenstorfer, Optica 2, 917 (2015)

    Article  Google Scholar 

  17. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, A. Leitenstorfer, Opt. Lett. 36, 540 (2011)

    Article  ADS  Google Scholar 

  18. V. Dolgovskiy, N. Bucalovic, P. Thomann, Ch. Schori, G. Di Domenico, S. Schilt, J. Opt. Soc. Am. B 29, 2944 (2010)

    Article  ADS  Google Scholar 

  19. W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, Y. Le Coq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 432 (2012)

    Article  Google Scholar 

  20. H.R. Telle, B. Lipphardt, J. Stenger, Appl. Phys. B 74, 1 (2002)

    Article  ADS  Google Scholar 

  21. E. Benkler, H.R. Telle, A. Zach, F. Tauser, Opt. Express 13, 327 (2005)

    Article  Google Scholar 

  22. N. Haverkamp, H. Hundertmark, C. Fallnich, H.R. Telle, Appl. Phys. B 78, 321 (2004)

    Article  ADS  Google Scholar 

  23. T. Puppe, A. Sell, R. Kliese, N. Hoghoogi, A. Zach, W. Kaenders, Opt. Lett. 41, 1877 (2016)

    Article  ADS  Google Scholar 

  24. T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980)

    Article  ADS  Google Scholar 

  25. A. Bartels, S.A. Diddams, T.M. Ramond, L. Hollberg, Opt. Lett. 28, 663 (2003)

    Article  ADS  Google Scholar 

  26. G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49, 4801 (2010)

    Article  ADS  Google Scholar 

  27. N. Bucalovic, V. Dolgovskiy, Ch. Schori, P. Thomann, G. Di Domenico, S. Schilt, Appl. Opt. 51, 4582 (2012)

    Article  ADS  Google Scholar 

  28. D. W. Allan, Proc. IEEE 54.2, 221 (1966)

    Article  ADS  Google Scholar 

  29. B.J. DeSalvo, J.A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K.R.A. Hazzard, F.B. Dunning, T.C. Killian, Phys. Rev. A 93, 022709 (2016)

    Article  ADS  Google Scholar 

  30. B.J. DeSalvo, J.A. Aman, F.B. Dunning, T.C. Killian, H.R. Sadeghpour, S. Yoshida, J. Burgdörfer, Phys. Rev. A 92, 031403 (2015)

    Article  ADS  Google Scholar 

  31. R. Beigang, K. Lücke, A. Timmermann, P.J. West, D. Frölich, Opt. Commun. 42, 19 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Puppe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kliese, R., Hoghooghi, N., Puppe, T. et al. Difference-frequency combs in cold atom physics. Eur. Phys. J. Spec. Top. 225, 2775–2784 (2016). https://doi.org/10.1140/epjst/e2016-60092-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60092-0

Navigation