Skip to main content
Log in

Estimation of motility parameters from trajectory data

A condensate of our recent results

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Given a theoretical model for a self-propelled particle or micro-organism, how does one optimally determine the parameters of the model from experimental data in the form of a time-lapse recorded trajectory? For very long trajectories, one has very good statistics, and optimality may matter little. However, for biological micro-organisms, one may not control the duration of recordings, and then optimality can matter. This is especially the case if one is interested in individuality and hence cannot improve statistics by taking population averages over many trajectories. One can learn much about this problem by studying its simplest case, pure diffusion with no self-propagation. This is an interesting problem also in its own right for the very same reasons: interest in individuality and short trajectories. We summarize our recent results on this latter issue here and speculate about the extent to which similar results may be obtained also for self-propelled particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Vestergaard, P.C. Blainey, H. Flyvbjerg, Phys. Rev. E 89, 022726 (2014)

    Article  ADS  Google Scholar 

  2. K.I. Mortensen, L.S. Churchman, J.A. Spudich, H. Flyvbjerg, Nat. Methods 7, 377 (2010)

    Article  Google Scholar 

  3. L. Li, E.C. Cox, H. Flyvbjerg, Phys. Biol. 8, 046006 (2011)

    Article  ADS  Google Scholar 

  4. D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Biophys. J. 89, 912 (2005)

    Article  Google Scholar 

  5. D. Selmeczi, L. Li, L.I.I. Pedersen, S.F. Nørrelykke, P.H. Hagedorn, S. Mosler, N.B. Larsen, E.C. Cox, H. Flyvbjerg, Eur. Phys. J. Special Topics 157, 1 (2008)

    Article  ADS  Google Scholar 

  6. C.L. Vestergaard, Optimizing experimental parameters for tracking of diffusing particles [arXiv:1504.05462v1] (2015)

  7. A. Tafvizi, L.A. Mirny, A.M. van Oijen, Chem. Phys. Chem. 12, 1481 (2011)

    Google Scholar 

  8. J. Gorman, E.C. Greene, Nat. Struct. Mol. Biol. 15, 768 (2008)

    Article  Google Scholar 

  9. R.D. Vale, D.R. Soll, I.R. Gibbons, Cell 59, 915 (1989)

    Article  Google Scholar 

  10. J. Helenius, G. Brouhard, Y. Kalaidzidis, S. Diez, J. Howard, Nature 441, 115 (2006)

    Article  ADS  Google Scholar 

  11. I. Minoura, E. Katayama, K. Sekimoto, E. Muto, Biophys. J. 98, 1589 (2010)

    Article  ADS  Google Scholar 

  12. A.W. Sonesson, U.M. Elofsson, T.H. Callisen, H. Brismar, Langmuir 23, 8352 (2007)

    Article  Google Scholar 

  13. S. Wieser, G.J. Schütz, Methods 46, 131 (2008)

    Article  Google Scholar 

  14. D. Lasne, G.A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J. 91, 4598 (2006)

    Article  ADS  Google Scholar 

  15. S.Y. Nishimura, S.J. Lord, L.O. Klein, K.A. Willets, M. He, Z. Lu, R.J. Twieg, W.E. Moerner, J. Phys. Chem. B 110, 8151 (2006)

    Article  Google Scholar 

  16. M.B. Smith, E. Karatekin, A. Gohlke, H. Mizuno, N. Watanabe, D. Vavylonis, Biophys. J. 101, 1794 (2011)

    Article  ADS  Google Scholar 

  17. H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, Biophys. J. 77, 2871 (1999)

    Article  Google Scholar 

  18. M. Goulian, S.M. Simon, Biophys. J. 79, 2188 (2000)

    Article  ADS  Google Scholar 

  19. P.C. Blainey, A.M. van Oijen, A. Banerjee, G.L. Verdine, X.S. Xie, Proc. Natl. Acad. Sci. (USA) 103, 5752 (2006)

    Article  ADS  Google Scholar 

  20. P.C. Blainey, G. Luo, S.C. Kou, W.F. Mangel, G.L. Verdine, B. Bagchi, X.S. Xie, Nat. Struct. Mol. Biol. 16, 1224 (2009)

    Article  Google Scholar 

  21. J. Elf, G.-W. Li, X.S. Xie, Science 316, 1191 (2007)

    Article  ADS  Google Scholar 

  22. A.J. Berglund, Phys. Rev. E 82, 011917 (2010)

    Article  ADS  Google Scholar 

  23. A. Graneli, C.C. Yeykal, R.B. Robertson, E.C. Greene, Proc. Natl. Acad. Sci. (USA) 103, 1221 (2006)

    Article  ADS  Google Scholar 

  24. M. Vrljic, S.Y. Nishimura, S. Brasselet, W.E. Moerner, H.M. McConnell, Biophys. J. 83, 2681 (2002)

    Article  ADS  Google Scholar 

  25. C.R. Rao, Linear Statistical Inference and its Applications, 2nd edition (Wiley Eastern, 1973)

  26. A. Einstein, Annal. Phys. 17, 549 (1905)

    Article  ADS  Google Scholar 

  27. X. Michalet, Phys. Rev. E 82, 041914 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Qian, M.P. Sheetz, E.L. Elson, Biophys. J. 60, 910 (1991)

    Article  Google Scholar 

  29. A. Biebricher, W. Wende, C. Escude, A. Pingoud, P. Desbiolles, Biophys. J. 96, L50 (2009)

    Article  Google Scholar 

  30. S.F. Nørrelykke, H. Flyvbjerg, Rev. Sci. Instrum. 81, 075103 (2010)

    Article  ADS  Google Scholar 

  31. K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004)

    Article  ADS  Google Scholar 

  32. B. Lukic, S. Jeney, C. Tischer, A.J. Kulik, L. Forro, E.L. Florin, Phys. Rev. Lett. 95, 160601 (2005)

    Article  ADS  Google Scholar 

  33. K. Berg-Sørensen, H. Flyvbjerg, New J. Phys. 7, 38 (2005)

    Article  ADS  Google Scholar 

  34. Th. Franosch, M. Grimm, M. Belushkin, F. Mor, G. Foffi, L. Forro, S. Jeney, Nature 478, 85 (2011)

    Article  ADS  Google Scholar 

  35. A. Jannasch, M. Mahamdeh, E. Schäffer, Phys. Rev. Lett. 107, 22830 (2011)

    Article  Google Scholar 

  36. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)

    Article  ADS  Google Scholar 

  37. G.L. de Haas-Lorentz, Over de theorie der Brown’sche beweging (Dissertation, Leyden, 1912)

  38. G.L. de Haas-Lorentz, Die Brownsche Bewegung (Braunschweig, 1913)

  39. G.L. de Haas-Lorentz, Die Wissenshaft, B. 52 (Vieweg, 1913)

  40. M. Smoluchowski, Phys. Z. 27, 557 (1916)

    ADS  Google Scholar 

  41. R. Fürth, Z. Phys. 2, 244 (1920)

    Article  ADS  Google Scholar 

  42. R. Fürth, Pflügers Arch. Physiol. 184, 294 (1920)

    Article  Google Scholar 

  43. K. Przibram, Pflügers Arch. Physiol. 153, 401 (1913)

    Article  Google Scholar 

  44. D. Selmeczi, S. Tolic-Nørrelykke, E. Schäffer, P.H. Hagedorn, S. Mosler, K. Berg-Sørensen, N.B. Larsen, H. Flyvbjerg, Brownian Motion after Einstein: Some new applications and new experiments, edited by H. Linke, A. Månsson, Controlled Nanoscale Motion in Biological and Artificial Systems, Vol. 711, Springer Lecture Notes in Physics, Nobel Symposium 131, Bäckaskog Castle, Sweden (Springer-Verlag, 2007), p. 181

  45. D. Selmeczi, S.F. Tolic-Nørrelykke, E. Schäffer, P.H. Hagedorn, S. Mosler, K. Berg-Sørensen, N.B. Larsen, H. Flyvbjerg, Acta Phys. Pol. B38, 2407 (2007)

    ADS  Google Scholar 

  46. http://en.wikipedia.org/wiki/Autocovariance

  47. http://en.wikipedia.org/wiki/Correlation_function_(statistical_mechanics)

  48. http://en.wikipedia.org/wiki/Correlation_function

  49. http://en.wikipedia.org/wiki/Autocorrelation

  50. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edition (Elsevier, 2007)

  51. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1999)

  52. http://en.wikipedia.org/wiki/Lévy_process

  53. J.N. Pedersen, L. Li, C. Gradinaru, R.H. Austin, E.C. Cox, H. Flyvbjerg, Time-Lapse Recorded Trajectories of Motile Micro-Organisms: How to connect discrete data with continuous models (unpublished) (2015)

  54. K.D. Girard, S.C. Kuo, D.N. Robinson, Proc. Natl. Acad. Sci. (USA), 103(7), 2103 (2006)

    Article  ADS  Google Scholar 

  55. S. Huet, E. Karatekin, V.S. Tran, I. Fanget, S. Cribier, J.-P. Henry, Biophys. J. 91, 3542 (2006)

    Article  ADS  Google Scholar 

  56. K. de Bruin, N. Ruthardt, K. von Gersdorff, R. Bausinger, E. Wagner, M. Ogris, C. Braeuchle, Mol. Therap. 15, 1297 (2007)

    Article  Google Scholar 

  57. D. Arcizet, B. Meier, E. Sackmann, J.O. Rädler, D. Heinrich, Phys. Rev. Lett. 101, 248103 (2008)

    Article  ADS  Google Scholar 

  58. M. Otten, A. Nandi, D. Arcizet, M. Gorelashvili, B. Lindner, Biophys. J. 102, 758 (2012)

    Article  ADS  Google Scholar 

  59. A. Nandi, D. Heinrich, B. Lindner, Phys. Rev. E 86, 021926 (2012)

    Article  ADS  Google Scholar 

  60. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  61. R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  62. Y. Meroz, I.M. Sokolov, Phys. Rep. 573, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  63. D. Boyer, D.S. Dean, C. Mejía-Monasterio, G. Oshanin, J. Stat. Mech. Theory Exp. 2013, P04017 (2013)

    Article  Google Scholar 

  64. E. Kepten, I. Bronshtein, Y. Ganini, Phys. Rev. E 87, 052713 (2013)

    Article  ADS  Google Scholar 

  65. E. Kepten, A. Weron, G. Sikora, K. Burnecki, Y. Garini, PLoS ONE 10, e0117722 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vestergaard, C.L., Pedersen, J.N., Mortensen, K.I. et al. Estimation of motility parameters from trajectory data. Eur. Phys. J. Spec. Top. 224, 1151–1168 (2015). https://doi.org/10.1140/epjst/e2015-02452-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02452-5

Keywords

Navigation