Skip to main content
Log in

Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations

  • Regular Article
  • A. Representation of Molecular Systems Across Scales
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In adaptive resolution simulations, molecular fluids are modeled employing different levels of resolution in different subregions of the system. When traveling from one region to the other, particles change their resolution on the fly. One of the main advantages of such approaches is the computational efficiency gained in the coarse-grained region. In this respect the best coarse-grained system to employ in the low resolution region would be the ideal gas, making intermolecular force calculations in the coarse-grained subdomain redundant. In this case, however, a smooth coupling is challenging due to the high energetic imbalance between typical liquids and a system of non-interacting particles. In the present work, we investigate this approach, using as a test case the most biologically relevant fluid, water. We demonstrate that a successful coupling of water to the ideal gas can be achieved with current adaptive resolution methods, and discuss the issues that remain to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)

    Article  ADS  Google Scholar 

  2. K. Kremer, G. Grest, I. Carmesin, Phys. Rev. Lett. 61, 566 (1988)

    Article  ADS  Google Scholar 

  3. L. Yelash, M. Müller, W. Paul, K. Binder, J. Chem. Theory Comput. 2, 588 (2006)

    Article  Google Scholar 

  4. T. Spyriouni, C. Tzoumanekas, D. Theodorou, F. Müller-Plathe, G. Milano, Macromolecules 40, 3876 (2007)

    Article  ADS  Google Scholar 

  5. J. McCammon, M. Karplus, Nature 268, 765 (1977)

    Article  ADS  Google Scholar 

  6. M. Karplus, J. McCammon, Nature 277, 578 (1979)

    Article  ADS  Google Scholar 

  7. P. Raiteri, A. Laio, F.L. Gervasio, C. Micheletti, M. Parrinello, J. Phys. Chem. B 110, 3533 (2006)

    Article  Google Scholar 

  8. H. Lou, R.I. Cukier, J. Phys. Chem. B 110, 12796 (2006)

    Article  Google Scholar 

  9. K. Arora, C.L. Brooks, Proc. Natl. Acad. Sci. USA 104, 18496 (2007)

    Article  ADS  Google Scholar 

  10. F. Pontiggia, A. Zen, C. Micheletti, Biophys. J 95, 5901 (2008)

    Article  Google Scholar 

  11. M.M. Tirion, D. ben Avraham, J. Mol. Biol. 230, 186 (1993)

    Article  Google Scholar 

  12. M.M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)

    Article  ADS  Google Scholar 

  13. I. Bahar, A.R. Atilgan, B. Erman, Folding Design 2, 173 (1997)

    Article  Google Scholar 

  14. C. Micheletti, P. Carloni, A. Maritan, Proteins 55, 635 (2004)

    Article  Google Scholar 

  15. R. Potestio, F. Pontiggia, C. Micheletti, Biophys. J 96, 4993 (2009)

    Article  Google Scholar 

  16. C. Globisch, V. Krishnamani, M. Deserno, C. Peter, PLoS ONE 8, e60582 (2013)

    Article  ADS  Google Scholar 

  17. K. Kremer, Computer simulations in soft matter science, Vol. 53 (IOP Publishing Ltd., 2000), p. 145

  18. K. Kremer, F. Müller-Plathe, MRS Bulletin 26, 205 (2001)

    Article  Google Scholar 

  19. N.A. van der Vegt, C. Peter, K. Kremer, Structure-Based Coarse- and Fine-Graining in Soft Matter Simulations, (CRC Press – Taylor and Francis Group, 2009), p. 379

  20. C. Hijón, E. Vanden-Eijnden, R. Delgado-Buscalioni, P. Español, Farad. Discuss. 144, 301 (2010)

    Article  ADS  Google Scholar 

  21. W. Noid, Systematic methods for structurally consistent coarse-grained models, Vol. 924 (Humana Press, 2013), p. 487

  22. W.G. Noid, J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  23. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)

    Article  ADS  Google Scholar 

  24. M. Praprotnik, L. Delle Site, K. Kremer, Phys. Rev. E. 73, 066701 (2006)

    Article  ADS  Google Scholar 

  25. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 126, 134902 (2007)

    Article  ADS  Google Scholar 

  26. M. Praprotnik, L. Delle Site, K. Kremer, Ann. Rev. Phys. Chem. 59, 545 (2008)

    Article  ADS  Google Scholar 

  27. S. Fritsch, C. Junghans, K. Kremer, J. Chem. Theory Comput. 8, 398 (2012)

    Article  Google Scholar 

  28. A.B. Poma, L.D. Site, Phys. Rev. Lett. 104, 250201 (2010)

    Article  ADS  Google Scholar 

  29. R. Potestio, L. Delle Site, J. Chem. Phys. 136, 054101 (2012)

    Article  ADS  Google Scholar 

  30. B. Ensing, S. Nielsen, P. Moore, M. Klein, M. Parrinello, J. Chem. Theor. Comp. 3, 1100 (2007)

    Article  Google Scholar 

  31. M. Praprotnik, S. Poblete, L. Delle Site, K. Kremer, Phys. Rev. Lett. 107, 099801 (2011)

    Article  ADS  Google Scholar 

  32. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)

    Article  ADS  Google Scholar 

  33. R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)

    Article  ADS  Google Scholar 

  34. R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Phys. Rev. Lett. 111, 060601 (2013)

    Article  ADS  Google Scholar 

  35. A. Agarwal, H. Wang, C. Schütte, L.D. Site, J. Chem. Phys. 141, 034102 (2014)

    Article  ADS  Google Scholar 

  36. K. Kreis, D. Donadio, K. Kremer, R. Potestio, Europhys. Lett. 108, 30007 (2014)

    Article  Google Scholar 

  37. P. Español, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, K. Kremer, J. Chem. Phys. 142, 064115 (2015)

    Article  ADS  Google Scholar 

  38. B. Mukherjee, L. Delle Site, K. Kremer, C. Peter, J. Phys. Chem. B. 116, 8474 (2012)

    Article  Google Scholar 

  39. B. Mukherjee, C. Peter, K. Kremer, Phys. Rev. E. 88, 010502 (2013)

    Article  ADS  Google Scholar 

  40. D. Reith, M. Putz, F. Müller-Plathe, J. Comp. Chem. 24, 1624 (2003)

    Article  Google Scholar 

  41. H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E 28, 221 (2009)

    Article  Google Scholar 

  42. L. Delle Site, Phys. Rev. E. 76, 047701 (2007)

    Article  ADS  Google Scholar 

  43. H. Wang, C. Hartmann, C. Schütte, L. Delle Site, Phys. Rev. X 3, 011018 (2013)

    Google Scholar 

  44. J. Kirkwood, J. Chem. Phys. 3, 300 (1935)

    Article  ADS  Google Scholar 

  45. J.D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stühn, D. Reith, Comput. Phys. Commun. 184, 1129 (2013)

    Article  ADS  Google Scholar 

  46. H. Berendsen, J. Grigera, T. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  47. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952 (1992)

    Article  Google Scholar 

  48. D. Mukherji, N.F.A. van der Vegt, K. Kremer, L. Delle Site, J. Chem. Theory Comput. 8, 375 (2012)

    Article  Google Scholar 

  49. V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kreis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreis, K., Fogarty, A.C., Kremer, K. et al. Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations. Eur. Phys. J. Spec. Top. 224, 2289–2304 (2015). https://doi.org/10.1140/epjst/e2015-02412-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02412-1

Keywords

Navigation