Skip to main content
Log in

Supply networks: Instabilities without overload

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Supply and transport networks support much of our technical infrastructure as well as many biological processes. Their reliable function is thus essential for all aspects of life. Transport processes involving quantities beyond the pure loads exhibit alternative collective dynamical options compared to processes exclusively characterized by loads. Here we analyze the stability and bifurcations in oscillator models describing electric power grids and demonstrate that these networks exhibit instabilities without overloads. This phenomenon may well emerge also in other sufficiently complex supply or transport networks, including biological transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Marris, Nature 454, 570 (2008)

    Article  Google Scholar 

  2. J.A. Turner, Science 285, 687 (1999)

    Article  Google Scholar 

  3. T. Pesch, H.-J. Allelein, J.-F. Hake, Eur. Phys. J. Special Topics 223(12), 2561 (2014)

    Article  ADS  Google Scholar 

  4. D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Renewable Energy 35, 2483 (2010)

    Article  Google Scholar 

  5. F. Böttcher, S. Barth, J. Peinke, Stoch. Environ. Res. Ris. Assess. 21, 299 (2007)

    Article  Google Scholar 

  6. P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)

    Article  ADS  Google Scholar 

  7. A.R. Bergen, D.J. Hill, IEEE Trans. Power Apparatus Syst. PAS-100, 25 (1981)

    Article  Google Scholar 

  8. D. Hill, G. Chen, Power systems as dynamic networks, in Proc. of the 2006 IEEE International Symposium on Circuits and Systems (2006), p. 725

  9. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)

    Article  ADS  Google Scholar 

  10. J. Machowski, J. Bialek, J. Bumby, Power system dynamics, stability and control (John Wiley & Sons, New York, 2008)

  11. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  12. D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)

    Article  ADS  Google Scholar 

  13. M. Rohden, A. Sorge, D. Witthaut, M. Timme, Chaos 24, 013123 (2014)

    Article  ADS  Google Scholar 

  14. F. Dörfler, M. Chertkov, F. Bullo, Proc. National Acad. Sci. 110, 2005 (2013)

    Article  ADS  Google Scholar 

  15. A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 191 (2013)

    Article  Google Scholar 

  16. P.J. Menck, J. Heitzig, J. Kurths, H.J. Schellnhuber, Nat. Comm. 5 (2014)

  17. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, New York, 1975), Lecture Notes in Physics, Vol. 39, p. 420

  18. S.H. Strogatz, Phys. D: Nonlinear Phenom. 143, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  20. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)

  21. Y. Susuki, I. Mezic, T. Hikihara, Global swing instability of multimachine power systems, in Decision and Control, CDC 2008, 47th IEEE Conference on (IEEE, 2008), p. 2487

  22. Y. Susuki, I. Mezić, T. Hikihara, J. Nonlinear Sci. 21(3), 403 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. F. Dorfler, F. Bullo, Circ. Syst. I: Regul. Papers, IEEE Trans. 60(1), 150 (2013)

    MathSciNet  Google Scholar 

  24. A.R. Bergen, D.J. Hill, Power Appar. Syst., IEEE Trans. (1), 25 (1981)

  25. K. Schmietendorf, J. Peinke, R. Friedrich, O. Kamps [arXiv:1307.2748] (2013)

  26. H.D. Chiang, F.F. Wu, P.P. Varaiya, Circ. Syst., IEEE Trans. 34(2), 160 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. C.J. Perez, F. Ritort, J. Phys. A: Math. General 30, 8095 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. J. Howard, Scholarpedia 8, 3627 (2013)

    Article  ADS  Google Scholar 

  29. M.E.J. Newman, Networks – An introduction (Oxford University Press, Oxford, 2010)

  30. H.K. Khalil, J. Grizzle, Nonlinear Systems, Vol. 3 (Prentice hall Upper Saddle River, 2002)

  31. M. Levi, F.C. Hoppenstaedt, W.L. Miranker, Quart. Appl. Math. 36, 167 (1978)

    MathSciNet  Google Scholar 

  32. H. Risken, The Fokker-Planck Equation (Springer, Berlin Heidelberg, 1996)

  33. P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)

    Article  Google Scholar 

  34. Y. Kuznetsov, Elements of Applied Bifurcation Theory, Vol. 112 (Springer, 1998)

  35. P.C. Parks, IMA J. Math. Contr. Inf. 9(4), 275 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. U. for the Co-ordination of Transmission of Electricity”, Continental Europe Operation Handbook (2014)

  37. P. Fairley, IEEE Spectr. 41, 22 (2004)

    Google Scholar 

  38. U.S.-Canada Power System Outage Task Force, https://reports.energy.gov/BlackoutFinal-Web.pdf (2004)

  39. Union for the Coordination of Transmission of Electricity, Final Report on the System Disturbance on 4 November 2006, http://www.entsoe.eu/library/publications/ce/otherreports/Final-Report-20070130.pdf (retrieved 13/10/2009) (2007)

  40. I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)

    Article  ADS  Google Scholar 

  41. W.N. Anderson Jr., T.D. Morley, Linear Multilinear A 18, 141 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Mohar, in Graph Theory, Combinatorics, and Applications 2, edited by Y. Alavi, G. Chartrand, O.R. Oellermann (Wiley, 1991), p. 871

  43. M. Fiedler, Czechoslovak Math. J. 23, 298 (1973)

    MathSciNet  Google Scholar 

  44. S. Fortunato, Phys. Reports 486, 75 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Braess, Unternehmensforschung 12, 258 (1968)

    MATH  MathSciNet  Google Scholar 

  46. D. Witthaut, M. Timme, Eur. Phys. J. B 86, 377 (2013)

    Article  ADS  Google Scholar 

  47. S.D. Pathak, J.M. Day, A. Nair, W.J. Sawaya, M.M. Kristal, Decision Sci. 38(4), 547 (2007)

    Article  Google Scholar 

  48. A.M.T. Ramos, C.P.C. Prado, Phys. Rev. E 87, 012719 (2013), http://link.aps.org/doi/10.1103/PhysRevE.87.012719

    Article  URL  ADS  Google Scholar 

  49. K.H. Jensen, J. Lee, T. Bohr, H. Bruus, N. Holbrook, M. Zwieniecki, J. Royal Society Interface 8(61), 1155 (2011)

    Article  Google Scholar 

  50. J. Patrick, Ann. Rev. Plant Biol. 48(1), 191 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Witthaut.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manik, D., Witthaut, D., Schäfer, B. et al. Supply networks: Instabilities without overload. Eur. Phys. J. Spec. Top. 223, 2527–2547 (2014). https://doi.org/10.1140/epjst/e2014-02274-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02274-y

Keywords

Navigation