Skip to main content

Advertisement

Log in

Laser electron acceleration beyond 100 GeV

  • Regular Article
  • IZEST Science: Laser Driven Particle Acceleration
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Nowadays there is great progress on laser-driven plasma-based accelerators by exploiting petawatt-class lasers, where for one aspect electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to laser wakefield acceleration mechanism. While to date, worldwide researches on laser-plasma accelerators are focused to create compact particle and radiation sources for applications in a wide range of sciences, including basic, medical and industrial sciences, there are great interests in applications for high energy physics and astrophysics that explore unprecedented high-energy frontier phenomena, for which laser plasma accelerator concepts provide us with promising tools. Here, our endeavors toward “extreme light” in the IZEST are envisaged for the next 30 years perspective and issues on laser plasma electron acceleration beyond 100 GeV and furthermore toward the TeV regime, aiming at high energy physics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  2. W.P. Leemans, et al., Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  3. C.E. Clayton, et al., Phys. Rev. Lett. 105, 105003 (2010)

    Article  ADS  Google Scholar 

  4. H. Lu, et al., Appl. Phys. Lett. 99, 091502 (2011)

    Article  ADS  Google Scholar 

  5. X.M. Wang, et al., Nat. Comm. 4, 1988 (2013)

    ADS  Google Scholar 

  6. H.T. Kim, et al., Phys. Rev. Lett. 111, 165002 (2013)

    Article  ADS  Google Scholar 

  7. T. Kameshima, et al., Appl. Phys. Exp. 1, 066001 (2008)

    Article  ADS  Google Scholar 

  8. S. Karsch, et al., New J. Phys. 9, 415 (2007)

    Article  ADS  Google Scholar 

  9. O. Lundh, et al., Nat. Phys. 7, 219 (2011)

    Article  Google Scholar 

  10. N.A.M. Hafz, et al., Nature Photon. 2, 571 (2008)

    Article  Google Scholar 

  11. J.S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011)

    Article  ADS  Google Scholar 

  12. B.B. Pollock, et al., Phys. Rev. Lett. 107, 045001 (2011)

    Article  ADS  Google Scholar 

  13. A. Pak, et al., Phys. Rev. Lett. 104, 025003 (2010)

    Article  ADS  Google Scholar 

  14. C. McGuffey, et al., Phys. Rev. Lett. 104, 025004 (2010)

    Article  ADS  Google Scholar 

  15. C. Xia, et al., Phys. Plasmas 18, 113101 (2011)

    Article  ADS  Google Scholar 

  16. S.F. Martins, et al., Nat. Phys. 6, 311 (2010)

    Article  ADS  Google Scholar 

  17. J.L. Vay, et al., Phys. Plasmas 18, 123103 (2011)

    Article  ADS  Google Scholar 

  18. M. Tzoufras, et al., J. Plasma Phys. 78, 401 (2012)

    Article  ADS  Google Scholar 

  19. C.B. Schroeder, et al., Phys. Rev. ST Accel. Beams 13, 101301 (2010)

    Article  ADS  Google Scholar 

  20. K. Nakajima, et al., Phys. Rev. ST Accel. Beams 14, 091301 (2011)

    Article  ADS  Google Scholar 

  21. K. Nakajima, et al., Chin. Optics Lett. 11, 013501 (2013)

    Article  ADS  Google Scholar 

  22. N. Blanchot,, et al., Opt. Expr. 18, 10088 (2010)

    Article  ADS  Google Scholar 

  23. B. Hafizi, et al., Phys. Rev. E 62, 4120 (2000)

    Article  ADS  Google Scholar 

  24. B. Hafizi, et al., Phys. Plasmas 10, 1483 (2003)

    Article  ADS  Google Scholar 

  25. C. Chiu, et al., Phys. Rev. ST Accel. Beams 3, 101301 (2000)

    Article  ADS  Google Scholar 

  26. I. Kostyukov, et al., Phys. Plasmas 11, 5256 (2004)

    Article  ADS  Google Scholar 

  27. W. Lu, et al., Phys. Rev. Lett. 96, 165002 (2006)

    Article  ADS  Google Scholar 

  28. W. Lu, et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007)

    Article  ADS  Google Scholar 

  29. E. Eseray, W.P. Leemans, Phys. Rev. E 59, 1082 (1999)

    Article  ADS  Google Scholar 

  30. S.Y. Kalmykov, et al., Plasma Phys. Control. Fusion 53, 014006 (2011)

    Article  ADS  Google Scholar 

  31. M. Chen, et al., Phys. Plasmas 19, 033101 (2012)

    Article  ADS  Google Scholar 

  32. C.G. Durfee III, et al., Phys. Rev. Lett. 71, 2409 (1993)

    Article  ADS  Google Scholar 

  33. P. Volfbeyn, et al., Phys. Plasmas 6, 2269 (1999)

    Article  ADS  Google Scholar 

  34. Y.F. Xiao, et al., Phys. Plasmas 11, L21 (2004)

    Article  ADS  Google Scholar 

  35. Y. Ehrlich, et al., Phys. Rev. Lett. 77, 4186 (1996)

    Article  ADS  Google Scholar 

  36. M. Liu, et al., Rev. Sci. Instrum. 81, 036107 (2010)

    Article  ADS  Google Scholar 

  37. T. Hosokai, et al., Opt. Lett. 25, 10 (2000)

    Article  ADS  Google Scholar 

  38. S.M. Hooker, et al., J. Opt. Soc. Am. B 17, 90 (2000)

    Article  ADS  Google Scholar 

  39. J.C. Ju, Ph.D. thesis, Université de Paris-Sud 11, Orsay, France, 2013

  40. B. Cros, et al., Phys. Rev. E 65, 026405 (2002)

    Article  ADS  Google Scholar 

  41. D. Du, et al., Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, K. Laser electron acceleration beyond 100 GeV. Eur. Phys. J. Spec. Top. 223, 999–1016 (2014). https://doi.org/10.1140/epjst/e2014-02151-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02151-9

Keywords

Navigation