Skip to main content
Log in

Colloidal particles at fluid interfaces: Effective interactions, dynamics and a gravitation–like instability

  • Review
  • Confining Geometries
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Colloidal particles of micrometer size usually become irreversibly trapped at fluid interfaces if they are partially wetted by one phase. This opens the chance to create two–dimensional model systems where the effective interactions between the particles are possibly influenced by the presence of the interface to a great extent. We will review recent developments in the quantitive understanding of these effective interactions with a special emphasis on electrostatics and capillarity. Charged colloids of micrometer size at an interface form effective dipoles whose strength sensitively depends on the double layer structure. We discuss the success of modified Poisson–Boltzmann equations with regard to measured colloidal dipole moments. On the other hand, for somewhat larger particles capillary interactions arise which are long–ranged and analogous to two–dimensional screened Newtonian gravity with the capillary length λ as the screening length. For colloidal diameters of around 10 micrometer, the collective effect of these long–ranged capillary interactions will dominate thermal motion and residual, short–ranged repulsions, and results in an instability towards a collapsed state for a finite patch of particles. Such long–ranged interactions with the associated instability are also of interest in other branches of physics, such as self-gravitating fluids in cosmology, two–dimensional vortex flow in hydrodynamics, and bacterial chemotaxis in biology. Starting from the colloidal case we develop and discuss a dynamical “phase diagram” in the temperature and interaction range variables which appears to be of more general scope and applicable also to other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Park, J.P. Pantina, E.M. Furst, M. Oettel, S. Reynaert, J. Vermant, Langmuir 24, 1686 (2008)

    Article  Google Scholar 

  2. K. Masschaele, B.J. Park, E.M. Furst, J. Fransaer, J. Vermant, Phys. Rev. Lett. 105, 048303 (2010)

    Article  ADS  Google Scholar 

  3. B.J. Park, J. Vermant, E.M. Furst, Soft Matter 6, 5237 (2010)

    Google Scholar 

  4. A.D. Law, D.M.A. Buzza, T.S. Horozov, Phys. Rev. Lett. 106, 128302 (2011)

    Article  ADS  Google Scholar 

  5. A.D. Law, M. Auriol, D. Smith, T.S. Horozov, D.M.A. Buzza, Phys. Rev. Lett. 110, 138301 (2013)

    Article  ADS  Google Scholar 

  6. P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)

    Article  Google Scholar 

  7. F. Bresme, M. Oettel, J. Phys.: Condens. Matter 19, 413101 (2007)

    Article  Google Scholar 

  8. M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)

    Article  Google Scholar 

  9. A. Domínguez, Capillary Forces between Colloidal Particles at Fluid Interfaces, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Alvarez (CRC Press, Boca Raton, FL, 2010), p. 31

  10. D. Frydel, A. Domínguez, M. Oettel, Phys. Rev. E(R) 77, 020401 (2008)

    Article  Google Scholar 

  11. D. Frydel, S. Dietrich, M. Oettel, Phys. Rev. Lett. 99, 118302 (2007)

    Article  ADS  Google Scholar 

  12. A. Shrestha, K. Bohinc, S. May, Langmuir 28, 14301 (2012)

    Article  Google Scholar 

  13. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)

    Article  ADS  Google Scholar 

  14. A. Abrashkin, D. Andelman, H. Orland, Phys. Rev. Lett. 99, 077801 (2007)

    Article  ADS  Google Scholar 

  15. D. Frydel, M. Oettel, Phys. Chem. Chem. Phys. 13, 4109 (2011)

    Article  Google Scholar 

  16. D. Frydel, J. Chem. Phys. 134, 234704 (2011)

    Article  ADS  Google Scholar 

  17. M.M. Hatlo, R. van Roij, L. Lue, EPL 97, 28010 (2012)

    Article  Google Scholar 

  18. I. Kalcher, J.C.F. Schulz, J. Dzubiella, Phys. Rev. Lett. 104, 097802 (2010)

    Article  ADS  Google Scholar 

  19. D. Frydel, Y. Levin, J. Chem. Phys. 137, 164703 (2012)

    Article  ADS  Google Scholar 

  20. K.D. Danov, P.A. Kralchevsky, J. Coll. Interface Science 345, 505 (2010)

    Article  Google Scholar 

  21. K.D. Danov, P.A. Kralchevsky, Adv. Coll. Interface Science 154, 91 (2010)

    Article  Google Scholar 

  22. A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)

    Article  ADS  Google Scholar 

  23. N. Aubry, P. Singh, Phys. Rev. E 77, 056302 (2008)

    Article  ADS  Google Scholar 

  24. N. Aubry, P. Singh, M. Janjua, S. Nudurupati, Proc. Nat. Acad. Sciences USA 105, 3711 (2008)

    Article  ADS  Google Scholar 

  25. K. Masschaele, J. Vermant, Soft Matter 7, 10597 (2011)

    Article  ADS  Google Scholar 

  26. B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)

    Article  Google Scholar 

  27. J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)

    Article  ADS  Google Scholar 

  28. J.C. Loudet, B. Pouligny, Eur. Phys. J. E 34, 76 (2011)

    Article  Google Scholar 

  29. E.P. Lewandowski, M. Cavallaro, Jr., L. Botto, J.C. Bernate, V. Garbin, K.J. Stebe, Langmuir 26, 15142 (2010)

    Article  Google Scholar 

  30. M. Cavallaro Jr., L. Botto, E.P. Lewandowski, M. Wang, K.J. Stebe, Proc. Nat. Acad. Sciences USA 108, 20923 (2011)

    Article  ADS  Google Scholar 

  31. L. Botto, L. Yao, R.L. Leheny, K.J. Stebe, Soft Matter 8, 4971 (2012)

    Article  ADS  Google Scholar 

  32. L. Botto, E.P. Lewandowski, M. Cavallaro Jr., K.J. Stebe, Soft Matter 8, 9957 (2012)

    Article  ADS  Google Scholar 

  33. M. Oettel, A. Domínguez, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 28, 99 (2009)

    Article  Google Scholar 

  34. L. Yao, L. Botto, M. Cavallaro Jr., B.J. Bleier, V. Garbin, K.J. Stebe, Soft Matter 9, 779 (2013)

    Article  ADS  Google Scholar 

  35. J. Guzowski, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 33, 219 (2010)

    Article  Google Scholar 

  36. J. Guzowski, M. Tasinkevych, S. Dietrich, Phys. Rev. E 84, 031401 (2011)

    Article  ADS  Google Scholar 

  37. J. Guzowski, M. Tasinkevych, S. Dietrich, Soft Matter 7, 4189 (2011)

    Article  ADS  Google Scholar 

  38. A. Würger, Phys. Rev. E 74, 041402 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Ershov, J. Sprakel, J. Appel, M.A. Cohen Stuart, J. van der Guch, Proc. Nat. Acad. Sciences USA 110, 9220 (2013)

    Article  ADS  Google Scholar 

  40. A. Vincze, A. Agod, J. Kertész, M. Zrínyi, Z. Hórvölgyi, J. Chem. Phys. 114, 520 (2001)

    Article  ADS  Google Scholar 

  41. P. Singh, D.D. Joseph, S.K. Gurupathama, B. Dalala, S. Nudurupatia, Proc. Nat. Acad. Sciences USA 106, 19761 (2009)

    Article  Google Scholar 

  42. J. de Graaf, M. Dijkstra, R. van Roij, J. Chem. Phys. 132, 164902 (2010)

    Article  ADS  Google Scholar 

  43. N. Chatterjee, S. Lapin, M. Flury, Environ. Sci. Technol. 46, 4411 (2012)

    Article  ADS  Google Scholar 

  44. A. Domí nguez, M. Oettel, S. Dietrich, Phys. Rev. E 82, 011402 (2010)

    ADS  Google Scholar 

  45. J. Bleibel, A. Domínguez, M. Oettel, S. Dietrich, Eur. Phys. J. E 34, 125 (2011)

    Article  Google Scholar 

  46. J. Bleibel, S. Dietrich, A. Domínguez, M. Oettel, Phys. Rev. Lett. 107, 128302 (2011)

    Article  ADS  Google Scholar 

  47. P.-H. Chavanis, C. Sire, Physica A 387, 4033 (2008)

    Article  ADS  Google Scholar 

  48. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Hilger, Bristol, 1988)

  49. M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)

    Article  ADS  Google Scholar 

  50. J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)

    Article  ADS  Google Scholar 

  51. J. Bleibel, J. Phys. A: Math. Theor. 45, 225002 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Bleibel, A. Domínguez, F. Günther, J. Harting, M. Oettel, Hydrodynamic interactions induce anomalous diffusion under partial confinement [arXiv:1305.3715] (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleibel, J., Domínguez, A. & Oettel, M. Colloidal particles at fluid interfaces: Effective interactions, dynamics and a gravitation–like instability. Eur. Phys. J. Spec. Top. 222, 3071–3087 (2013). https://doi.org/10.1140/epjst/e2013-02076-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-02076-9

Keywords

Navigation