Skip to main content
Log in

A fractional approach to the Fermi-Pasta-Ulam problem

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems (Los Alamos report LA-1940 1955), published later in Collected Papers of Enrico Fermi, edited by E. Segré (University of Chicago Press, 1965)

  2. J. Ford, Phys. Rep. 213, 271 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. T.P. Weissert, The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem (Springer, New York, 1997)

  4. M.A. Porter, N.J. Zabusky, B. Hu, D.K. Campbell, American Scientist 97, 214 (2009)

    Article  Google Scholar 

  5. G. Benettin, Chaos 15, 015108 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  MATH  Google Scholar 

  7. B. Chirikov, F. Izrailev, V. Tayurskij, Comput. Phys. Commun. 5, 11 (1973)

    Article  ADS  Google Scholar 

  8. D.J. Korteweg, G. de Vries, Philosophical Mag. 5th Series 36, 422 (1895)

    Article  Google Scholar 

  9. F.M. Izrailev, B.V. Chirikov, Soviet Phys. Dokl. 11, 30 (1966)

    ADS  Google Scholar 

  10. N.J. Zabusky, G.S. Deem, J. Comp. Phys. 2, 126 (1967)

    Article  ADS  Google Scholar 

  11. P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, Phys. Rev. A 2, 2013 (1970)

    Article  ADS  Google Scholar 

  12. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, Phys. Rev. A 31, 1039 (1985)

    Article  ADS  Google Scholar 

  13. M. Pettini, M. Landolfi, Phys. Rev. A 41, 768 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  14. J. De Luca, A.J. Lichtenberg, M.A. Lieberman, Chaos 5, 283 (1995)

    Article  ADS  Google Scholar 

  15. D.L. Shepelyansky, Nonlinearity 10, 1331 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L. Casetti, M. Cerruti-Sola, M. Pettini, E.G.D. Cohen, Phys. Rev. E 55, 6566 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  18. G. James, C.R. Acad. Sci. Paris Ser. I Math. 332, 581 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. T. Dauxois, R. Khomeriki, F. Piazza, S. Ruffo, Chaos 15, 015110-1-11 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Flach, M.V. Ivanchenko, O.I. Kanakov, Phys. Rev. Lett. 95, 064102-1-4 (2005)

    ADS  Google Scholar 

  21. T. Penati, S. Flach, Chaos 17, 023102-1-16 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Bambusi, A. Ponno, Comm. Math. Phys. 264, 539 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Dauxois, M. Peyrard, S. Ruffo, Eur. J. Phys. 26, S3 (2005)

    Article  MathSciNet  Google Scholar 

  24. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (Academic Press, New York-London, 1974)

  25. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Amsterdam, 1993)

  26. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, New York, 1993)

  27. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, Math. Studies, Vol. 204 (Elsevier (North-Holland), Amsterdam, 2006)

  28. A. Gemant, Physics 7, 311 (1936)

    Article  ADS  Google Scholar 

  29. R.L. Bagley, P.J. Torvik, AIAA J. 21, 741 (1983)

    Article  ADS  MATH  Google Scholar 

  30. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (Imperial College Press, London, 2010)

  31. J.A.T. Machado, J. Syst. Anal. Modell. Simul. 27, 107 (1997)

    MATH  Google Scholar 

  32. I. Podlubny, Fractional Diferential Equations (Academic Press, San Diego, 1999)

  33. J.A.T. Machado, J. Fract. Calculus Appl. Anal. 4, 47 (2001)

    MATH  Google Scholar 

  34. V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)

  35. J.T. Machado, V. Kiryakova, F. Mainardi, Comm. Nonlinear Sci. Numer. Simul. 16, 1140 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. J.A.T. Machado, Some Notes About the Fermi-Pasta-Ulam Problem (Symposium on Fractional Signals and Systems, Coimbra, Portugal, 2011)

  37. D. Raškovič, Teorija elastičnosti (Theory of Elasticity) (Nauna knjiga, 1985)

  38. K. Hedrih, Signal Proc. 86, 2678 (2006)

    Article  MATH  Google Scholar 

  39. L.T. Burton, IEEE Trans. Circuit Theory 16, 406 (1969)

    Article  ADS  Google Scholar 

  40. A. Antoniou, IEEE Trans. Circuit Theory 17, 212 (1970)

    Article  Google Scholar 

  41. R. Senani, IEEE Trans. Circ. Syst. 33, 323 (1986)

    Article  Google Scholar 

  42. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  43. L.O. Chua, Appl. Phys. A: Mater. Sci. Proc. 102, 765 (2011)

    Article  ADS  Google Scholar 

  44. D. Jeltsema, A. Dòria-Cerezo, Appl. Phys. A: Mater. Sci. Proc. 100, 1928 (2012)

    Google Scholar 

  45. J.A.T. Machado, Comm. Nonlinear Sci. Numer. Simul. 18, 264 (2013)

    Article  MATH  Google Scholar 

  46. R.S. Barbosa, J.A.T. Machado, B.M. Vinagre, A.J. Calderón, J. Vibr. Control 13, 1291 (2007)

    Article  MATH  Google Scholar 

  47. C.M. Pinto, J.A.T. Machado, Nonlinear Dyn. 65, 247 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. T. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, J.A.T. A fractional approach to the Fermi-Pasta-Ulam problem. Eur. Phys. J. Spec. Top. 222, 1795–1803 (2013). https://doi.org/10.1140/epjst/e2013-01964-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01964-2

Keywords

Navigation