Skip to main content
Log in

Electrostatic tuning of the electrical properties of YBa2Cu3O7−x using an ionic liquid

  • Regular Article
  • Superconductors
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ultrathin YBa2Cu3O7−x (YBCO) films were grown on SrTiO3 (STO) substrates using the technique of high-pressure oxygen sputtering. Films were then incorporated in a field effect transistor configuration, which facilitated the control of superconductivity by electrostatic charging. While devices using STO as both the substrate and gate dielectric have produced only relatively small shifts in film electrical properties, very large changes can be realized using an electric double layer transistor configuration employing the ionic liquid DEME-TFSI as the dielectric. By depleting holes an electrostatically tuned superconductor insulator transition was studied using a finite size scaling analysis. The breakdown of scaling at the lowest temperatures suggests the presence of a mixed insulator/superconductor phase separating the two ground states. Further depletion of holes resulted in a change of the majority carriers from holes to electrons and the emergence of what appeared to be very weak re-entrant superconductivity. Also by accumulating holes an underdoped film was tuned into the overdoped regime. A two-step mechanism for electrostatic doping was revealed. Hall effect measurements suggested the presence of an electronic phase transition or a change in the Fermi surface as a function of doping near optimal doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Muller, Z. Phys. B: Cond. Matter 64, 189 (1986)

    Article  Google Scholar 

  2. M.K. Wu, et al., Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  3. Y. Tokura, H. Takagi, S. Uchida, Nature (London) 337, 345 (1989)

    Article  ADS  Google Scholar 

  4. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  5. C.H. Ahn, et al., Rev. Mod. Phys. 78, 1185 (2006)

    Article  ADS  Google Scholar 

  6. C.H. Ahn, et al., Science 284, 1152 (1999)

    Article  ADS  Google Scholar 

  7. H.L.F. von Helmholtz, Ann. Physik 89, 211 (1853)

    Article  ADS  Google Scholar 

  8. J.T. Ye, et al., Nature Mater. 9, 125 (2009)

    Article  ADS  Google Scholar 

  9. Y. Lee, et al., Phys. Rev. Lett. 106, 136809 (2011)

    Article  ADS  Google Scholar 

  10. H. Shimotani, et al., Appl. Phys. Lett. 91, 082106 (2007)

    Article  ADS  Google Scholar 

  11. A.T. Bollinger, et al., Nature (London) 472, 458 (2011)

    Article  ADS  Google Scholar 

  12. X. Leng, et al., Phys. Rev. Lett. 107, 027001 (2011)

    Article  ADS  Google Scholar 

  13. J. Garcia-Barriocanal, et al., Phys. Rev. B 87, 024509 (2013)

    Article  ADS  Google Scholar 

  14. W.H. Brattain, C.G.B. Garrett, Bell Syst. Techn. J. 34, 129 (1955)

    Google Scholar 

  15. S.G. Haupt, et al., J. Am. Chem. Soc. 115, 1196 (1993)

    Article  Google Scholar 

  16. A.S. Dhoot, et al., Adv. Mater. 22, 2529 (2010)

    Article  Google Scholar 

  17. M. Varela, et al., Phys. Rev. Lett. 86, 5156 (2001)

    Article  ADS  Google Scholar 

  18. M. Varela, et al., Phys. Rev. Lett. 83, 3936 (1999)

    Article  ADS  Google Scholar 

  19. H.M. Jaeger, et al., Phys. Rev. B 40, 182 (1989)

    Article  ADS  Google Scholar 

  20. N. Doiron-Leyraud, et al., Nature (London) 447, 565 (2007)

    Article  ADS  Google Scholar 

  21. I.F. Herbut, Phys. Rev. Lett. 87, 137004 (2001)

    Article  ADS  Google Scholar 

  22. M. Ruhlander, C.M. Soukoulis, Phys. Rev. B 63, 085103 (2001)

    Article  ADS  Google Scholar 

  23. D.-H. Lee, Z. Wang, S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993)

    Article  ADS  Google Scholar 

  24. M. Salluzzo, et al., Phys. Rev. Lett. 100, 056810 (2008)

    Article  ADS  Google Scholar 

  25. R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 73, 180505 (2006)

    Article  ADS  Google Scholar 

  26. M.R. Presland, et al., Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  27. J.L. Tallon, et al., Phys. Rev. B 51, 12911 (1995)

    Article  ADS  Google Scholar 

  28. X. Leng, et al., Phys. Rev. Lett. 108, 067004 (2012)

    Article  ADS  Google Scholar 

  29. K. Segawa, Y. Ando, Phys. Rev. Lett. 86, 4907 (2001)

    Article  ADS  Google Scholar 

  30. F.F. Balakirev, et al., Nature (London) 424, 912 (2003)

    Article  ADS  Google Scholar 

  31. F.F. Balakirev, et al., Phys. Rev. Lett. 102, 017004 (2009)

    Article  ADS  Google Scholar 

  32. J.L. Tallon, et al., Phys. Status Solidi B 215, 531 (1999)

    Article  ADS  Google Scholar 

  33. C. Jaudet, et al., Phys. Rev. Lett. 100, 187005 (2008)

    Article  ADS  Google Scholar 

  34. B. Vignolle, et al., Nature (London) 455, 952 (2008)

    Article  ADS  Google Scholar 

  35. D. LeBoeuf, et al., Nature (London) 450, 533 (2007)

    Article  ADS  Google Scholar 

  36. M.R. Norman, et al., Nature (London) 392, 157 (1998)

    Article  ADS  Google Scholar 

  37. K.M. Shen, et al., Science 307, 901 (2005)

    Article  ADS  Google Scholar 

  38. M. Plate, et al., Phys. Rev. Lett. 95, 077001 (2005)

    Article  ADS  Google Scholar 

  39. M.A. Hossain, et al., Nature Phys. 4, 527 (2008)

    Article  Google Scholar 

  40. M.R. Norman, Physics 3, 86 (2010)

    Article  Google Scholar 

  41. K. Segawa, et al., Nat. Phys. 6, 579 (2010)

    Article  Google Scholar 

  42. T. Nojima, et al., Phys. Rev. B 84, 020502 (2011)

    Article  ADS  Google Scholar 

  43. M. Gurvitch, et al., Physica C 153-155, 1369 (1988)

    Article  ADS  Google Scholar 

  44. C. Tsuei, A. Gupta, G. Koren, Physica C 161, 415 (1989)

    Article  ADS  Google Scholar 

  45. Y. Ando, et al., Phys. Rev. B 61, R14956 (2000)

    Article  ADS  Google Scholar 

  46. T.D. Stanescu, P. Phillips, Phys. Rev. B 69, 245104 (2004)

    Article  ADS  Google Scholar 

  47. W. Jiang, et al., Phys. Rev. Lett. 73, 1291 (1994)

    Article  ADS  Google Scholar 

  48. B.G. Orr, H.M. Jaeger, A.M. Goldman, Phys. Rev. B 32, 7586 (1985)

    Article  ADS  Google Scholar 

  49. M. Kunchir, et al., Phys. Rev. B 36, 4062 (1987)

    Article  ADS  Google Scholar 

  50. A. Gerber, et al., Phys. Rev. Lett. 65, 3201 (1990)

    Article  ADS  Google Scholar 

  51. W.A. Fertig, et al., Phys. Rev. Lett. 38, 987 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, X., Garcia-Barriocanal, J., Kinney, J. et al. Electrostatic tuning of the electrical properties of YBa2Cu3O7−x using an ionic liquid. Eur. Phys. J. Spec. Top. 222, 1203–1215 (2013). https://doi.org/10.1140/epjst/e2013-01915-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01915-y

Keywords

Navigation