Skip to main content
Log in

A fixture for interfacial dilatational rheometry using a rotational rheometer

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In characterizing complex fluid-fluid interfaces, interfacial rheometry has become an important tool to indirectly probe the interfacial microstructure and molecular interactions. It can also be useful to obtain the constitutive properties of an interface for calculating the interfacial flows of complex fluid-fluid interfaces. A number of devices for measuring interfacial shear rheology have been designed and have been thoroughly validated. However, although a range of devices for measuring interfacial dilatational rheology exist, they do not always allow for a proper separation of the effects of dynamic surface tension, curvature elasticity, Marangoni stresses, bulk flow effects and the desired dilatational rheological material functions. In the present work it is investigated if a fixture for a standard rotational rheometer can be designed which probes the dilatational viscoelastic properties of a planar complex fluid-fluid interface. A modification of the double wall ring geometry for shear rheometry is proposed, which creates a mixed but analyzable flow field. The use of a mixed flow field inherently limits the sensitivity for the dilatational properties, but some advantages over existing techniques are presented, in particular for insoluble monolayers. More importantly, the analysis illustrate some generic aspects on the use of mixed interfacial flow fields for measuring the surface rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Fuller, J. Vermant, Soft Matter 7, 7583 (2011)

    Article  ADS  Google Scholar 

  2. P. Erni, Soft Matter 7, 7586 (2011)

    Article  ADS  Google Scholar 

  3. L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)

    Article  ADS  Google Scholar 

  4. G.G. Fuller, J. Vermant, Annu. Rev. Chem. Biomol. Eng. 3, 519 (2012)

    Article  Google Scholar 

  5. C. Alonso, A. Waring, and J.A. Zasadzinski, Biophys. J. 89, 266 (2005)

    Article  Google Scholar 

  6. D.L. Leiske, C.I. Leiske, D.R. Leiske, M.F. Toney, M. Senchyna, H.A. Ketelson, D.L. Meadows, G.G. Fuller, Biophys. J. 102, 369 (2012)

    Article  ADS  Google Scholar 

  7. P.J. Martin, K.N. Odic, A.B. Russell, I.W. Burns, D.I. Wilson, Appl. Rheology 18, 12913-1 (2008)

    Google Scholar 

  8. D. Langevin, Adv. Coll. Interf. Sci. 323, 209 (2000)

    Article  Google Scholar 

  9. H.W. Yarranton, P. Urrutia, D.M. Sztukowski, J. Coll. Interf. Sci. 310, 253 (2007)

    Article  Google Scholar 

  10. M.B.J. Meinders, T. van Vliet, Adv. Coll. Interf. Sci. 108, 119 (2004)

    Article  Google Scholar 

  11. L. Wilhelmy, Annal. Phys. Chem. 119, 177 (1863)

    Article  Google Scholar 

  12. H.-J. Butt, K. Graf, M. Kappl, Physics and chemistry of interfaces (Wiley-VCH, Weinheim, 2003)

  13. F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action (Cambridge University Press, London, 1883)

  14. S.M.I. Saad, Z. Policova, A.W. Neumann, Coll. Surf. A-Physicochem. Eng. Aspects 384, 442 (2011)

    Article  Google Scholar 

  15. B. Vonnegut, Rev. Sci. Instrum. 13, 6 (1942)

    Article  ADS  Google Scholar 

  16. S.-G. Oh, J.C. Slattery, J. Coll. Interf. Sci. 67, 516 (1978)

    Article  Google Scholar 

  17. P. Erni, P. Fischer, E.J. Windhab, V. Kusnezov, H. Stettin, J. Läuger, Rev. Scientif. Instr. 74, 4916 (2003)

    Article  ADS  Google Scholar 

  18. S. Reynaert, C.F. Brooks, P. Moldenaers, J. Vermant, G.G. Fuller, J. Rheol. 52, 261 (2008)

    Article  ADS  Google Scholar 

  19. S. Vandebril, A. Franck, G.G. Fuller, P. Moldenaers, J. Vermant, Rheol. Acta 49, 131 (2009)

    Article  Google Scholar 

  20. T. Verwijlen, P. Moldenaers, H.A. Stone, J. Vermant, Langmuir 27, 9345 (2011)

    Article  Google Scholar 

  21. C.F. Brooks, G.G. Fuller, C.W. Frank, C.R. Robertson, Langmuir 15, 2450 (1999)

    Article  Google Scholar 

  22. S.Q. Choi, S. Steltenkamp, J.A. Zasadzinski, T.M. Squires, Nat. Comm. 2, 312 (2011)

    Article  Google Scholar 

  23. L. Imperiali, K.H. Liao, C. Clasen, J. Fransaer, C.W. Macosko, J. Vermant, Langmuir 28, 7990 (2012)

    Article  Google Scholar 

  24. D.B. Jones, A.P.J. Middelberg, Chem. Eng. Sci. 57, 1711 (2002)

    Article  Google Scholar 

  25. T. Verwijlen, D.L. Leiske, P. Moldenaers, J. Vermant, G.G. Fuller, J. Rheol. 56, 1225 (2012)

    Article  ADS  Google Scholar 

  26. F. Ravera, G. Loglio, V.I. Kovalchuk, Curr. Opinion Coll. Interf. Sci. 15, 217 (2010)

    Article  Google Scholar 

  27. S.C. Russev, N. Alexandrov, K.G. Marinova, K.D. Danov, N.D. Denkov, L. Lyutov, V. Vulchev, C. Bilke-Krause, Rev. Scientif. Instr. 79, 104102 (2008)

    Article  ADS  Google Scholar 

  28. A.A. Badran, E. Marschall, Rev. Scientif. Instr. 57, 259 (1986)

    Article  ADS  Google Scholar 

  29. L. Seta, N. Baldino, D. Gabriele, F.R. Lupi, B. de Cindio, Food Hydrocoll. 29, 247 (2012)

    Article  Google Scholar 

  30. E.V. Aksenenko, V.I. Kovalchuk, V.B. Fainerman, R. Miller, J. Phys. Chem. C 111, 14713 (2007)

    Article  Google Scholar 

  31. A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)

    Article  ADS  Google Scholar 

  32. N.A. Alexandrov, K.G. Marinova, T.D. Gurkov, K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, T.B.J. Blijdenstein, L.N. Arnaudov, E.G. Pelan, A. Lips, J. Coll. Interf. Sci. 376, 296 (2012)

    Article  Google Scholar 

  33. A. Javadi, J.K. Ferri, Th. D. Karapantsios, R. Miller, Coll. Surf. A: Physicochem. Eng. Aspects 365, 145 (2010)

    Article  Google Scholar 

  34. M. Karbaschi, D. Bastani, A. Javadi, V.I. Kovalchuk, N.M. Kovalchuk, A.V. Makievski, E. Bonaccurso, R. Miller, Coll. Surf. A: Physicochem. Eng. Aspects 413, 292 (2012)

    Article  Google Scholar 

  35. D. Carvajal, E.J. Laprade, K.J. Henderson, K.R. Shull, Soft Matter 7, 10508 (2011)

    Article  ADS  Google Scholar 

  36. J.T. Petkov, T.D. Gurkov, B.E. Campbell, R.P. Borwankar, Langmuir 16, 3703 (2000)

    Article  Google Scholar 

  37. P. Cicuta, E.M. Terentjev, Eur. Phys. J. E 16, 147 (2005)

    Article  Google Scholar 

  38. S.R. Derkach, J. Krägel, R. Miller, Coll. J. 71, 1 (2009)

    Article  Google Scholar 

  39. E. Aumaitre, D. Vella, P. Cicuta, Soft Matter 7, 2530 (2011)

    Article  ADS  Google Scholar 

  40. G. Kretzschmar, J. Li, R. Miller, H. Motschmann, H. Möhwald, Coll. Surf. A: Physicochem. Eng. Aspects 114, 277 (1996)

    Article  Google Scholar 

  41. L. Liggieri, R. Miller, Curr. Opinion Coll. Interf. Sci. 15, 256 (2010)

    Article  Google Scholar 

  42. R. Miller, P. Joos, V.B. Fainerman, Adv. Coll. Interf. Sci. 49, 249 (1994)

    Article  Google Scholar 

  43. F. Ravera, G. Loglio, P. Pandolfini, E. Santini, L. Liggieri, Coll. Surf. A: Physicochem. Eng. Aspects 365, 2 (2010)

    Article  Google Scholar 

  44. N.J. Alvarez, S.L. Anna, T. Saigal, R.D. Tilton, L.M. Walker, Langmuir 28, 8052 (2012)

    Article  Google Scholar 

  45. N.J. Alvarez, L.M. Walker, S.L. Anna, Langmuir 26, 13310 (2010)

    Article  Google Scholar 

  46. N.J. Alvarez, L.M. Walker, S.L. Anna, Phys. Rev. E 82, 011604 (2010)

    Article  ADS  Google Scholar 

  47. N.J. Alvarez, D.R. Vogus, L.M. Walker, S.L. Anna, J. Coll. Interf. Sci. 372, 183 (2012)

    Article  Google Scholar 

  48. N.J. Alvarez, L.M. Walker, S.L. Anna, Soft Matter 8, 8917 (2012)

    Article  ADS  Google Scholar 

  49. T.A. Witten, J. Wang, L. Pocivavsek, K.Y.C. Lee, J. Chem. Phys. 132, 046102 (2010)

    Article  ADS  Google Scholar 

  50. L.E. Scriven, Chem. Eng. Sci. 12, 98 (1960)

    Article  Google Scholar 

  51. L.D. Landau, E.M. Lifshitz, Theory of elasticity (Pergamon Press, Oxford, 1984)

  52. D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial transport processes and rheology (Butterworth-Heinemann, Boston, 1991)

  53. M. Stepanova, Biophys. J. 96, 4896 (2009)

    Article  ADS  Google Scholar 

  54. P. Erni, P. Fischer, E.J. Windhab, Langmuir 21, 10555 (2005)

    Article  Google Scholar 

  55. J. Lucassen, M. van den Tempel, Chem. Eng. Sci. 27, 1283 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vermant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwijlen, T., Moldenaers, P. & Vermant, J. A fixture for interfacial dilatational rheometry using a rotational rheometer. Eur. Phys. J. Spec. Top. 222, 83–97 (2013). https://doi.org/10.1140/epjst/e2013-01828-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01828-9

Keywords

Navigation