Skip to main content
Log in

On the use of slow manifolds in molecular and geophysical fluid dynamics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Constraints typically arise from the elimination of high frequency oscillations in mechanical systems. Examples are provided by bond constraints in molecular simulations and incompressibility constraints in fluid dynamics. A key issue is the accuracy of constrained dynamics with regard to the full dynamics. In this review we focus on the smooth solution components and discuss the concept of slow manifold and soft constraints in molecular and geophysical fluid dynamics. While the formal mathematical derivation of constraints is the same for both molecular and fluid dynamics, the predominant numerical techniques for dealing with constraints are different in the two fields. Semi-implicit time- stepping methods are often used in geophysical fluid dynamics while explicitly enforced constraints are more common in molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integrators (Springer-Verlag, Berlin, 2006)

  2. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004)

  3. F. Bornemann, Homogenization in Time of Singularly Perturbed Systems (Springer-Verlag, Berlin, 1998)

  4. S. Reich, Physica D 138, 210 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. G. Benettin, L. Galgani, A. Giorgilli, Comm. Math. Phys. 113, 87 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. P. Echenique, C.N. Cavasotto, P. García-Risueño, Eur. Phys. J. Special Topics 200, 5 (2011)

    Article  ADS  Google Scholar 

  7. R. Salmon, Lectures on Geophysical Fluid Dynamics (Oxford University Press, Oxford, 1998)

  8. D.R. Durran, Numerical Methods for Fluid Dynamic: With Applications to Geophysics, (Springer-Verlag, New York, 2010)

  9. J. Zhou, S. Reich, B.R. Brooks, J. Chem. Phys. 112, 7919 (2000)

    Article  ADS  Google Scholar 

  10. R.D. Skeel, S. Reich, Eur. Phys. J. Special Topics 200, 55 (2011)

    Article  ADS  Google Scholar 

  11. A. Robert, Jpn. Meteor. Soc. 60, 319 (1982)

    Google Scholar 

  12. P. Lynch, Large-Scale Atmospheric-Ocean Dynamics: Vol II: Geometric Methods and Models (Cambridge University Press, Cambridge, 2002), p. 64

  13. N. Kopell, Physica D 14, 203 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D. Wirosoetisno, Adv. Diff. Eq. 9, 177 (2004)

    MATH  MathSciNet  Google Scholar 

  15. S. Reich, Physica D 89, 28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Schlick, Molecular Modelling and Simulation: An Interdisciplinary Guide (Springer-Verlag, New York, 2010)

  17. N. Wood, A. Staniforth, S. Reich, Atmos. Sci. Lett. 7, 21 (2006)

    Article  ADS  Google Scholar 

  18. B. Hess, H. Saint-Martin, H.J.C. Berendsen, J. Chem. Phys. 116, 9602 (2002)

    Article  ADS  Google Scholar 

  19. T. Hundertmark, S. Reich, Quart. J. Royal. Meteorol. Soc. 133, 1575 (2007)

    Google Scholar 

  20. A. Staniforth, N. Wood, S. Reich, Quart. J. Royal. Meteorol. Soc. 132, 3107 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hundertmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hundertmark, T., Reich, S. On the use of slow manifolds in molecular and geophysical fluid dynamics. Eur. Phys. J. Spec. Top. 200, 259–270 (2011). https://doi.org/10.1140/epjst/e2011-01527-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01527-7

Keywords

Navigation