Skip to main content
Log in

Liquid entrainment by gas flow along the interface of a liquid bridge

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We report the results of numerical and experimental studies of two-phase flows in an annulus. The geometry corresponds to a cylindrical liquid column co-axially placed into an outer cylinder with solid walls. Gas enters into the annular duct and entrains the initially quiescent liquid. The internal column consists of solid rods at the bottom and top, while the central part is a liquid bridge from a viscous liquid and kept in its position by surface tension. Silicone oil 5cSt was used as a test liquid and air and nitrogen as gases. An original numerical approach was developed to study the problem in complex geometry. The flow structure in the liquid is analyzed for a wide range of gas flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Machida, K. Hoshikawa, Y. Shimizu, J. Crystal Growth 210, 532 (2000)

    Article  ADS  Google Scholar 

  2. A.M. Ganan-Calvo, J.M. Montanero, Phys. Rev. E 79, 066305 (2009)

    Article  ADS  Google Scholar 

  3. V. Shevtsova, M. Mojahed, J.C. Legros, Acta Astronautica 44, 625 (1999)

    Article  ADS  Google Scholar 

  4. V. Shevtsova, A. Mialdun, M. Mojahed, J. Non-Equilib. Thermodyn. 30, 261 (2005)

    Article  ADS  Google Scholar 

  5. A. Mialdun, V. M. Shevtsova, 2006, Microgravity Sci. Technol., XVIII-3/4, 146

  6. Y. Kamotani, L. Wang, S. Hatta, A. Wang, S. Yoda, Int. J. Heat Mass Transfer 46, 3211 (2003)

    Article  Google Scholar 

  7. A. Wang, Y. Kamotani, S. Yoda, Int. J. Heat Mass Transfer 50, 4195 (2007)

    Article  MATH  Google Scholar 

  8. I. Ueno, A. Kawazoe, H. Enomoto, Fluid Dyn. Mater. Proc. 6, 99 (2010)

    Google Scholar 

  9. M. Irikira, Y. Arakawa, I. Ueno, H. Kawamura, Microgravity Sci. Technol., XVI-I, 174 (2005)

  10. S. Tiwari, K. Nishino, J. Crystal Growth 300, 486 (2007)

    Article  ADS  Google Scholar 

  11. D. Melnikov, V. Shevtsova, Fluid Dyn. Mater. Proc. 3, 329 (2007)

    Google Scholar 

  12. L.P. Yarin, A. Mosyak, G. Hestroni, Fluid flow, heat transfer and boiling in micro channels (Berlin, Springer, 2009)

  13. M. Nishimura, I. Ueno, K. Nishino, H. Kawamura, Exper. Fluids 38, 285 (2005)

    Article  ADS  Google Scholar 

  14. C. Ferrera, J.M. Montanero, A. Mialdun, V. Shevtsova, M.G. Cabezas, Meas. Sci. Technol. 19, 015410 (2008)

    Article  ADS  Google Scholar 

  15. Y. Gaponenko, I. Ryzhkov, V. Shevtsova, Fluid Dyn. Mater. Proc. 6, 75 (2010)

    MathSciNet  MATH  Google Scholar 

  16. V. Shevtsova, J. Crystal Growth 280, 632 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaponenko, Y., Miadlun, A. & Shevtsova, V. Liquid entrainment by gas flow along the interface of a liquid bridge. Eur. Phys. J. Spec. Top. 192, 63–70 (2011). https://doi.org/10.1140/epjst/e2011-01360-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01360-0

Keywords

Navigation