Skip to main content
Log in

Giant magnetostrain based on strong single ion anisotropy of rare earth materials

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The volume, shape and microstructure of solids can be influenced by magnetic fields. Much effort is focused on magnetic shape memory (MSM) materials. Recently, the MSM effect has been discovered to occur also in the paramagnetic state, e.g. in RCu2 compounds (R = rare earth). RMSM materials distinguish themselves from conventional MSM materials by the new origin of the magnetoic anisotropy: the strong rare-earth single ion anisotropy. Due to the pseudo-hexagonal symmetry of RCu2, three orientational variants exists, each of them rotated by about 60 deg with respect to the others. Switching these variants by an external field results in a change of the macroscopic shape. The strain is in the order of one percent (= Giant MagnetoStrain). The variant's fraction remains unchanged when ramping down the field. The virgin state can be recovered by heating or by a perpendicularly directed field. We present temperature and field dependent measurements of magnetostrain and magentization at the model substance Tb0.5Dy0.5Cu2. The macroscopic characterization of the sample is complemented by a detailed microscopic analysis done by elastic neutron scattering. Although the GMS effect of RCu2 was worked out at single crystals, the principle of this magneto-mechanical coupling phenomenon is also useful for polycrystalline or microscaled applications. The existence of this structural irreversibility shows the potential to construct field controlled actuators or switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Sozinov, A.A. Lanska, N. Lanska, K. Ullako, Appl. Phys. Lett. 80, 1746 (2002)

    Google Scholar 

  • O. Heczko, L. Straka, J. Appl. Phys. 94, 7139 (2003)

    Google Scholar 

  • A.N. Lavrov, A. Komiya, Y. Ando, Nature 418, 385 (2002)

    Google Scholar 

  • Y. Hashimoto, A. Yamagishi, T. Takeuchi, M. Date, J. Magn. Magn. Mat. 90-91, 49 (1990)

    Google Scholar 

  • S. Kramp, M. Doerr, M. Rotter, M. Loewenhaupt, R. van de Kamp, Euro. Phys. B 18, 559 (2000)

    Google Scholar 

  • K. Sugiyama, T. Yamamoto, N. Nakamura, K. Kindo, R. Settai, Y. Onuki, J. Magn. Magn. Mat. 262, 389 (2003)

    Google Scholar 

  • S. Raasch, M. Doerr, A. Kreyssig, M. Rotter, J.-U. Hoffmann, M. Loewenhaupt, Phys. Rev. B 73, 64402 (2006)

    Google Scholar 

  • M. Loewenhaupt, M. Doerr, M. Rotter, T. Reif, A. Schneidewind, J. Phys. 30, 754 (2000)

    Google Scholar 

  • M. Rotter, E. Gratz, H. Müller, M. Doerr, M. Loewenhaupt, Rev. Sci. Instrum. 69, 2742 (1998)

    Google Scholar 

  • M. Doerr, M. Rotter, M. Loewenhaupt, T. Reif, P. Svoboda, Physica B 284-288, 1331 (2000)

    Google Scholar 

  • A.R. Storm, K.E. Benson, Acta Cryst. 16, 701 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doerr, M., Raasch, S., Rotter, M. et al. Giant magnetostrain based on strong single ion anisotropy of rare earth materials. Eur. Phys. J. Spec. Top. 158, 125–130 (2008). https://doi.org/10.1140/epjst/e2008-00664-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00664-4

Keywords

Navigation