Skip to main content
Log in

Beyond the Keller-Segel model

Microscopic modelling of bacterial colonies

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Complex spatio-temporal patterns of cell clusters were observed in colonies of chemotactic bacteria such as Escherichia coli or Sallmonella typhimurium. The production of a potent chemoattractant by the bacteria themselves as a reaction to certain nutrients is the essential factor for this pattern formation. Additional collective dynamics, such as collective translation and rotation of bacterial clusters were reported from experiments on bacterial colonies. Motivated by this observations we suggest a simple model for the description of bacterial colonies using the concept of active Brownian particles. Individual based models represent an interesting alternative to the usually employed mean field chemotaxis-diffusion equations (Keller-Segel model) as they allow us to study the macroscopic pattern formation of the colony, the collective dynamics of bacterial ensembles, as well as the microscopic dynamics of individual cells. In this paper we derive microscopic model equations from basic assumptions about bacterial dynamics, discuss the parameter choice by comparison with biological data and analyse the macroscopic and microscopic dynamics of the system. Finally we extend the model by a velocity-alignment (swarming) interaction which leads to novel collective dynamics in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.F. Keller, L.A. Segel, J. Theor. Biol. 30, 225 (1971)

    Google Scholar 

  • E.F. Keller, L.A. Segel, J. Theor. Biol. 30, 235 (1971)

    Google Scholar 

  • R. Tyson, S.R. Lubkin, J.D. Murray, J. Math. Biol. 38, 359 (1999)

    Google Scholar 

  • R. Tyson, S.R. Lubkin, J.D Murray, Proc. Royal Soc. London B 266, 299 (1999)

    Google Scholar 

  • M. Matsushita, J. Wakita, H. Itoh, K. Watanabe, T. Arai, T. Matsuyama, H. Sakaguchi, M. Mimura, Physica A 274, 190 (1999)

  • Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob, Phys. Rev. E 59, 7025 (1999)

    Google Scholar 

  • E.O. Budrene, H.C. Berg, Nature 349, 630 (1991)

    Google Scholar 

  • E.O. Budrene, H.C. Berg, Nature 376, 49 (1995)

    Google Scholar 

  • A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Phys. Rev. E 54, 1791 (1996)

    Google Scholar 

  • M. Eisenbach, Chemotaxis (World Scientific Publishing, 2004)

  • W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17 (1999)

    Google Scholar 

  • U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000)

    Google Scholar 

  • U. Erdmann, W. Ebeling, V.S. Anishchenko, Phys. Rev. E 65, 061106 (2002)

    Google Scholar 

  • W. Ebeling, Physica A 314, 92 (2002)

  • B.A. Mello, L. Shaw, Y. Tu, Biophys. J. 87, 1578 (2004)

  • S.-H. Kim, W. Wang, K.K. Kim, Proc. Nation. Acad. Sci. USA 99, 11611 (2002)

    Google Scholar 

  • V. Sourjik, H.C. Berg, Proc. Nation. Acad. Sci. USA 99, 123 (2002)

    Google Scholar 

  • E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000)

    Google Scholar 

  • J.D. Murray, Mathematical Biology I, 3 edn. (Springer, Berlin, 2004)

  • F. Schweitzer, L. Schimansky-Geier, Physica A 206, 359 (1994)

    Google Scholar 

  • A.S. Mikhailov, D. Meinköhn, Self-motion in physico-chemical systems far from equilibrium, Vol. 484, Lecture Notes in Physics (Springer-Verlag, Berlin, 1997), p. 334

  • M. Loferer-Krösbacher, J. Klima, R. Psenner, Appl. Envir. Microbiol. 64, 688 (1997)

    Google Scholar 

  • A. Czirók, T. Vicsek, Physica A 281, 17 (2000)

    Google Scholar 

  • M.R. D'Orsogna, Y.L. Chuang, A.L. Bertozzi, L.S. Chayes, Phys. Rev. Lett. 96, 104302 (2006)

    Google Scholar 

  • U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B, 15, 105 (2000)

    Google Scholar 

  • L. Schimansky-Geier, W. Ebeling, U. Erdmann, Acta Phys. Polon. 36, 1757 (2005)

    Google Scholar 

  • W.Q. Zhu, M. Lin Deng, Phys. A: Stat. Mech. Appl. 354, 127 (2005)

    Google Scholar 

  • U. Erdmann, W. Ebeling, Fluc. Noise Lett. 3, 145 (2003)

    Google Scholar 

  • T.J. Pedley, J.O. Kessler, Ann. Rev. Fluid Mech. 24, 313 (1992)

    Google Scholar 

  • C.M. Pooley, G.P. Alexander, J.M Yeomans, Swimming with a friend at low reynolds number, 0705.3612 (2007)

  • Z. Csahók, A. Czirók, Physica A 243, 304 (1997)

    Google Scholar 

  • P. Romanczuk, U. Erdmann, PRL (2007) (submitted)

  • G.V. Soni, B.M. Jaffar Ali, Y. Hatwalne, G.V. Shivashankar, Biophys. J. 84, 2634 (2003)

    Google Scholar 

  • F. Peruani, A. Deutsch, M. Bar, Phys. Rev. E (Stat. Nonl. Soft Matter Phys.) 74, 030904–4 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Romanczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanczuk, P., Erdmann, U., Engel, H. et al. Beyond the Keller-Segel model. Eur. Phys. J. Spec. Top. 157, 61–77 (2008). https://doi.org/10.1140/epjst/e2008-00631-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00631-1

Keywords

Navigation