Skip to main content
Log in

The origin of thermal hadron production

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Multihadron production in high energy collisions, from e+e- annihilation to heavy ion interactions, shows remarkable thermal behaviour, specified by a universal “Hagedorn” temperature. We argue that this hadronic radiation is formed by tunneling through the event horizon of colour confinement, i.e., that it is the QCD counterpart of Hawking-Unruh radiation from black holes. It is shown to be emitted at a universal temperature TH ≃ (σ/2 π)1/2, where σ denotes the string tension. Since the event horizon does not allow information transfer, the radiation is thermal “at birth”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Castorina, D. Kharzeev, H. Satz, Europ. Phys. J. C 52, 187 (2007) 187

    Google Scholar 

  • E. Recami, P. Castorina, Lett. Nuovo Cim. 15, 347 (1976)

    Google Scholar 

  • A. Salam, J. Strathdee, Phys. Rev. D 18 (1978)

  • A.F. Grillo, Y. Srivastava, Phys. Lett. B 85, 377 (1979)

    Google Scholar 

  • S.W. Hawking, Comm. Math. Phys. 43, 199 (1975)

    Google Scholar 

  • R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965); Nuovo Cim. A 56, 1027 (1968)

    Google Scholar 

  • F. Becattini, Z. Phys. C 69, 485 (1996) (e+e-); F. Becattini, U. Heinz, Z. Phys. C 76, 268 (1997) (\(pp/p\bar p\)); J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993) (heavy ions); F. Becattini et al., Phys. Rev. C 64, 024901 (2001) (heavy ions); P. Braun-Munziger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2003) (heavy ions)

  • See e.g., Li Zhi Fang, R. Ruffini, Basic Concepts in Relativistic Astrophysics (World Scientific, Singapore, 1983)

  • W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Google Scholar 

  • For a clear discussion and references to the original solutions by M. Born (1909) and A. Sommerfeld (1910), edited by W. Pauli, Relativitätstheorie, in Enzyklopädie der mathematischen Wissenschaften (Teubner-Verlag, Leipzig, 1921); English version Theory of Relativity (Pergamon Press, 1958)

  • T.D. Lee, Nucl. Phys. B 264, 437 (1986)

    Google Scholar 

  • M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Google Scholar 

  • M. Novello et al., Phys. Rev. D 61, 045001 (2000)

  • S. Barshay, W. Troost, Phys. Lett. 73B, 437 (1978)

  • A. Hosoya, Progr. Theoret. Phys. 61, 280 (1979)

    Google Scholar 

  • M. Horibe, Progr. Theoret. Phys. 61, 661 (1979)

    Google Scholar 

  • J. Schwinger, Phys. Rev. 82, 664 (1951)

    Google Scholar 

  • J.D. Bjorken, Lect. Notes Phys. (Springer) 56, 93 (1976)

    Google Scholar 

  • A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)

    Google Scholar 

  • M. Lüscher, G. Münster, P. Weisz, Nucl. Phys. B 180, 1 (1981)

  • D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005); D. Kharzeev [hep-ph/0511354]

  • D. Kharzeev, E. Levin, K. Tuchin [hep-ph/0602063]

  • J. Dias de Deus, C. Pajares [hep-ph/0605148]

  • R. Hagedorn, Thermodynamics of Strong Interactions, CERN 71-12 (1971); R. Stock, Phys. Lett. B 456, 277 (1999)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satz, H. The origin of thermal hadron production. Eur. Phys. J. Spec. Top. 155, 167–175 (2008). https://doi.org/10.1140/epjst/e2008-00599-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00599-8

Keywords

Navigation