Skip to main content
Log in

Dynamical neural networks: Modeling low-level vision at short latencies

The quest for the neural code of vision at the first milliseconds

The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Our goal is to understand the dynamics of neural computations in low-level vision. We study how the substrate of this system, that is local biochemical neural processes, could combine to give rise to an efficient and global perception. We will study these neural computations at different scales from the single-cell to the whole visual system to infer generic aspects of the under- lying neural code which may help to understand this cognitive ability. In fact, the architecture of cortical areas, such as the Primary Visual Cortex (V1), is massively parallel and we will focus on cortical columns as generic adaptive micro-circuits. To stress on the dynamical aspect of the processing, we will also focus on the transient response, that is during the first milliseconds after the presentation of a stimulus. In a generic model of a visual area, we propose to study the neural code as implementing visual pattern matching, that is as efficiently inverting a known model of image synthesis. A possible solution offered by the architecture of the visual pathways could be to represent at first on the surface of the cortical area how well the prototypical visual features are matched by a combination of inferential mechanisms as ideal observers. We studied the efficiency of this representation by rating the statistics of the output using natural scenes, that is scenes occurring frequently. We show that this may be finally used to provide a behavioral output such as an eye movement. However, constraints specific to the visual system imply that the set of prototypical features is not independent and that the cortical columns should communicate to produce an efficient, sparse solution. We will present efficient algorithms and representations based on the event-based nature of neural computations. By explicitely defining this efficiency, we propose then a simple implementation of Sparse Spike Coding using greedy inference mechanisms but also how the system may adapt in a unsupervised fashion. These computations may be implemented in simple models of neural networks by explicitly setting the lateral connectivity between populations of columns. Using natural scenes, this algorithm provides a model of V1 which exhibit prototypical properties of neural activities in that area. We show simple applications in the field of image processing as a quantitative method to evaluate these different cortical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–83 (2000)

    Google Scholar 

  • E. Adrian, The Basis of Sensation: The Action of Sense Organs (ChristoPhers., London, 1928)

  • H. Akaike, IEEE Trans. Automat. Contr. 19, 716–23 (1974)

    MATH  ADS  MathSciNet  Google Scholar 

  • D.G. Albrecht, D.B. Hamilton, J. Neurophysiol. 48, 217–238 (1982)

    Google Scholar 

  • T.D. Albright, J. Neurophysiol. 52, 1106–30 (1984)

    Google Scholar 

  • L. Alvarez, Y. Gousseau, J.-M. Morel, The Size of Objects in Natural Images. Technical Report 9921, Centre de Mathématique et de Leurs Applications (1999)

  • J.J. Atick, Network: Comput. Neural Syst. 3, 213–52 (1992)

    MATH  Google Scholar 

  • G. Aubert, R. Deriche, P. Kornprobst, SIAM J. Appl. Math. 60, 156–82 (2000)

    MathSciNet  Google Scholar 

  • W. Bair, C. Koch, Neural Comput. 8, 1185–1202 (1996)

    Google Scholar 

  • W. Bair, J.R. Cavanaugh, A. Movshon, J. Neurosci. 23, 7690–701 (2003)

    Google Scholar 

  • A.-L. Barabasi, E. Bonabeau, Sci. Am. 288, 50 (2003)

    Google Scholar 

  • H.B. Barlow, Netw.: Comput. Neural Syst. 12, 241–25 (2001)

    Google Scholar 

  • H.B. Barlow, Perception 1, 371–94 (1972)

    Google Scholar 

  • A. Basole, L.E. White, D. Fitzpatrick, Nature 423, 986–990 (2003)

    ADS  Google Scholar 

  • P. Bayerl, H. Neumann, Neural Comput. 16, 2041–66 (2004)

    MATH  Google Scholar 

  • T. Bayes, Phil. Trans. R. Soc. Lond. 53, 370–418 (1764)

    Google Scholar 

  • A.J. Bell, T.J. Sejnowski, Neural Comput. 7, 1129–59 (1995)

    Google Scholar 

  • A.J. Bell, T.J. Sejnowski, Vis. Res. 37, 3327–38 (1997)

    Google Scholar 

  • C.C. Bell, V.Z. Han, Y. Sugawara, K. Grant, Nature 387, 278–81 (1997)

    ADS  Google Scholar 

  • G.-Q. Bi, M.-M. Poo, J. Neurosc i. 18, 10464–72 (1998)

    Google Scholar 

  • K.J. Blinowska, P.J. Durka, The application of wavelet transform and matching pursuit to the time-varying EEG signals, in edited by C.H. Dagli, B.R. Fernandez, Intelligent Engineering Systems through Artificial Neural Networks, Vol. 4 (ASME Press, New York, 1994), pp. 535–540, ISBN 0-7918-045-8

  • L.J. Borg-Graham, Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models, in Cerebral Cortex, Vol. 13, edited by P.S. Ulinski, E.G. Jones, A. Peters (Plenum Press, New York, 1999)

  • K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Principien, dargestellt auf grund des Zellenbaues. (Johann Ambrosius Barth Verlag, Leipzig, 1909)

  • J. Bullier, Brain Res. Rev. 36, 96–107 (2001) URL http://dx.doi.org/10.1016/S0165-0173(01)00085-6

    Google Scholar 

  • P.J. Burt, E.H. Adelson, IEEE Trans. Commun. (COM-31) 4, 532–40 (1983)

    Google Scholar 

  • S. Ramòn Cajal Y, Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1911)

  • J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 8, 679–98 (1986)

    Google Scholar 

  • E. Capobianco, Comput. Stat. Data Anal. 42, 385–402 (2003)

    MathSciNet  Google Scholar 

  • M. Carandini, J. Heeger, A. Movshon, J. Neurosci. 17, 8621–44 (1997)

    Google Scholar 

  • S. Castan, J. Zhao, J. Shen, Optimal Filter for Edge Detection Methods and Results, in In Proceedings of the First European Conference on Computer Vision (Eccv) (1990), pp. 13–7

  • J.R. Cavanaugh, W. Bair, A. Movshon, J. Neurophys. 88, 2530–46 (2002) URL http://dx.doi.org/10.1152/jn.00692.2001

    Google Scholar 

  • S. Celebrini, S.J. Thorpe, Y. Trotter, M. Imbert, Vis. Neurosci. 5, 811–25 (1993)

    Google Scholar 

  • S. Chen, Basis pursuit. Ph.D. thesis, Stanford (1995)

  • Y. Dan, J.J. Atick, R.C. Reid, J. Neurosci. 16, 3351–62 (1996)

    Google Scholar 

  • G. Davis, Adaptive Nonlinear Approximations, Ph.D. thesis, New York University, 1994

  • P. Dayan, L.F. Abbott, Theor. Neurosci. (The MIT Press, Cambridge, MA, 2001)

  • D. Debanne, D. Shulz, Y. Frégnac, Can. J. Physiol. Pharmacol. 73, 1295–311 (1995)

    Google Scholar 

  • P. Degond, S. Mas-Gallic, Math. Comput. 53, 485–525 (1989)

    MATH  ADS  MathSciNet  Google Scholar 

  • A. Delorme, S.J. Thorpe, J. Comput. Neurosci. 15, 357–65 (2003)

    Google Scholar 

  • S. Denève, P.E. Latham, A. Pouget, Nat. Neurosci. 2, 740–5 (1999)

    Google Scholar 

  • R. Deriche, Int. J. Comput. Vis. 1, 167–87 (1987)

    Google Scholar 

  • M. Deweese, A. Zador, J. Neurosci. 23 (2003)

  • W.D. Dong, J.J. Atick, Netw: Comput. Neural Sys. 6, 345–58 (1995)

    MATH  Google Scholar 

  • P.J. Durka, D. Ircha, K.J. Blinowska, IEEE Trans. Sign. Proc. 49, 507–510 (2001)

    Google Scholar 

  • C. Enroth-Cugell, J.G. Robson, J. Physiol. 187, 517–23 (1966)

    Google Scholar 

  • D.J. Field, Opt. Soc. Am. A 4, 2379–94 (1987)

    ADS  Google Scholar 

  • D.J. Field, Neural Comput. 6, 559–601 (1994)

    Google Scholar 

  • D.J. Field, A. Hayes, R.F. Hess, Vis. Res. 33, 173–93 (1993)

    Google Scholar 

  • S. Fischer, R. Redondo, L.U. Perrinet, G. Cristóbal, Efficient representation of natural images using local cooperation, in edited by R.A. Carmona, G. Linan-Cembrano, Perception, 34, of ECVP, 241 (2005)

  • S. Fischer, G. Cristóbal, R. Redondo, IEEE Trans. Image Proc. 15, 265 (2006a)

  • S. Fischer, F. Sroubek, L.U. Perrinet, R. Redondo, G. Cristóbal, Int. J. Comput. Vis. (2006b)

  • W.J. Freeman, J.M. Barrie, Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex, in Temporal Coding in the Brain edited by Buzsáki G (Springer-Verlag, Berlin Heidelberg, 1994), pp. 13-37

  • J.H. Friedman, W. Stuetzle, J. Am. Stat. Associ. (1980)

  • P. Fries, J.H. Schroder, P.R. Roelfsema, W. Singer, A.K. Engel, J. Neurosci. 22, 3739–54 (2002)

    Google Scholar 

  • P. Frossard, P. Vandergheynst, A Posteriori Quantized Matching Pursuit. IEEE Data Compression Conference (2001)

  • W.S. Geisler, J.S. Perry, B.J. Super, D.P. Gallogly, Vis. Res. 41, 711–24 (2001)

    Google Scholar 

  • S. Georges, P. Seriès, Y. Frégnac, J. Lorenceau, Vis. Res. 42, 2757–72 (2002)

    Google Scholar 

  • A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Science 233, 1416–9 (1986)

    ADS  Google Scholar 

  • C.D. Gilbert, T.N. Wiesel, Nature 280, 120–5 (1979)

    ADS  Google Scholar 

  • R. Gribonval, P. Vandergheynst, IEEE Trans. Inf. Theory 52, 255–61 (2006) doi:10.1109/TIT.2005.860474

    MathSciNet  Google Scholar 

  • F. Grimbert, O. Faugeras, Analysis of Jansen's model of a single cortical column. Technical Report 5597, Projet Odyssée (2005)

  • A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, A. Sterkin, Infvivo Modern Techniques in Neuroscience Research optical imaging of cortical architecture and dynamics, edited by U. Windhorst, H. Johansson (Springer Verlag, 2001)

  • A. Grinvald, E.E. Lieke, R.D. Frostig, R. Hildesheim, J. Neurosci. 14, 2545–68 (1994)

    Google Scholar 

  • S. Grossberg, Behav. Cognit. Neurosci. Rev. 2, 47–76 (2003)

    Google Scholar 

  • S. Grossberg, A. Yazdanbakhsh, Vis. Res. 45, 1725–43 (2005) URL http://dx.doi.org/10.1016/j.visres.2005.01.006

    Google Scholar 

  • R. Guyonneau, R. VanRullen, S.J. Thorpe, Neural Comput. 17, 859–79 (2005)

    MATH  Google Scholar 

  • R.H.R. Hahnloser, A.A. Kozhevnikov, M.S. Fee, Nature 419, 65–70 (2002)

    ADS  Google Scholar 

  • H.K. Hartline, Am. J. Physiol. 130, 690–9 (1940)

    Google Scholar 

  • D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (New York, Wiley, 1949)

  • G.H. Henry, B. Dreher, P.O. Bishop, J. Neurophysiol. 37, 1394–409 (1974)

    Google Scholar 

  • J.C. Horton, D.L. Adams, Philos. Trans. R. Soc. Lond. 360, 837–62 (2005) doi:10.1098/rstb.2005.1623

    Google Scholar 

  • T. Hosoya, S.A. Baccus, M. Meister, Nature 436, 71–7 (2005) URL http://dx.doi.org/10.1038/nature03689

    ADS  Google Scholar 

  • D. Hubel, T. Wiesel, J. Physiol. 148, 574–91 (1959)

    Google Scholar 

  • D. Hubel, T. Wiesel, J. Physiol. 160, 106–54 (1962)

    Google Scholar 

  • D. Hubel, T. Wiesel, J. Physiol. 195, 215–44 (1968)

    Google Scholar 

  • D. Hubel, T. Wiesel, J. Physiol. 158, 295–306 (1974)

    Google Scholar 

  • D. Jancke, F. Chavane, Shmuel, Naaman, Nature 428, 423–6 (2004)

    ADS  Google Scholar 

  • V.K. Jirsa, Neuroinformatics (2004)

  • J.P. Jones, L.A. Palmer, J. Neurophysiol. 58, 1233–58 (1987)

    Google Scholar 

  • E.R. Kandel, J.H. Schwartz, T.M. Jessel, Principles of Neural Science' 4th edn. (McGraw Hill, New York, 2000)

  • D. Kersten, P. Mamassian, A. Yuille, Ann. Rev. Psychol. 55, 271–304 (2003)

    Google Scholar 

  • C. Koch, (Ed.) Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, New York, 1998)

  • C. Koch, I. Segevn, Nat. Neurosci. 3, 1171–7 (2000)

    Google Scholar 

  • T. Kohonen, Biol. Cybern. 43, 59–69 (1982)

    MATH  MathSciNet  Google Scholar 

  • I. Kovacs, P. Kozma, A. Feher, G. Benedek, Proc. Natl. Acad Sci. USA 96, 12204–12209 (1999) URL http://www.pnas.org/cgi/content/abstract/96/21/12204

    ADS  Google Scholar 

  • J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9, 112–47 (1998)

    MATH  MathSciNet  Google Scholar 

  • L. Lapicque, J. Physiol. (Paris) 9, 620–35 (1907)

    Google Scholar 

  • S.B. Laughlin, Z. Naturf. 9–10, 910–2 (1981)

  • E. Le Pennec, S. Mallat, IEEE Trans. Image Proc. 14, 423 (2005)

    Google Scholar 

  • M.S. Lewicki, T.J. Sejnowski, Neural Comput. 12, 337–65 (2000)

    MathSciNet  Google Scholar 

  • Z. Liu, J.P. Gaska, L.D. Jacobson, D.A. Pollen, Vis. Res. 32, 1193–8 (1992)

    Google Scholar 

  • N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Nature 412, 150–7 (2001)

    ADS  Google Scholar 

  • D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms. (Cambridge University Press, 2003) URL http://www.inference.phy.cam.ac.uk/mackay/itila/

  • P.C. Mahalanobis, Proc. Nat. Inst. Sci. Ind. 12, 49–55 (1936)

    Google Scholar 

  • Z.F. Mainen, T.J. Sejnowski, Nature 382, 363–366 (1996)

    ADS  Google Scholar 

  • S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, 1998)

  • S. Mallat, W.L. Hwang, Singularity Detection And Processing with Wavelets. Technical report, Courant Institute of Mathematical Sciences (New York University, New York, 1991)

  • S. Mallat, Z. Zhang, IEEE Trans. Sign. Proc. 41, 3397–3414 (1993)

    MATH  Google Scholar 

  • P. Mamassian, Probabilistic Models of the Brain: Perception and Neural Function, Bayesian modelling of visual perception, in In Rao et al., 13–36 (2002)

  • D. Marr, Phil. Trans. R. Soc. Lond. 290, 199–218 (1980)

    Google Scholar 

  • D. Marr, Vision (W.H. Freeman and Company, NY, 1982)

  • S. Martinez-Conde, S.L. Macknik, D. Hubel, Nat. Neurosci. 3, 251–258 (2000)

    Google Scholar 

  • G.S. Masson, J. Physiol. (Paris) 98, 35–52 (2004)

    ADS  Google Scholar 

  • G.S. Masson, E. Castet, J. Neurosci. 22, 5149–63 (2002)

    Google Scholar 

  • G.S. Masson, D.R. Mestre, F. Martineau, C. Soubrouillard, C. Brefel, O. Rascol, O. Blin, Behav. Brain Res. 108, 169–80 (2000)

    Google Scholar 

  • F. Metelli, Sci. Am. 230, 90–8 (1974)

    Google Scholar 

  • W. Metzger, Gesetze des Sehens (Verlag Waldemar Kramer, Frankfurt, 1936)

  • C. Monier, F. Chavane, P. Baudot, L.J. Graham, Y. Frégnac, Neuron 37, 663–80 (2003)

    Google Scholar 

  • A. Montagnini, P. Mamassian, L.U. Perrinet, E. Castet, G.S. Masson, Bayesian modeling of dynamic motion integration. In 1ère conférence francophone NEUROsciences COMPutationnelles (NeuroComp, 2006)

  • V.B. Mountcastle, J. Neurophysiol. 20, 408–434 (1957)

    Google Scholar 

  • V.B. Mountcastle, Perceptual neuroscience: the cerebral cortex (1998)

  • K.I. Naka, W.A. Rushton, J. Physiol. 185, 587–99 (1966)

    Google Scholar 

  • R. Neff, A. Zakhor, IEEE Trans. CSVT 7, 158–71 (1997)

    Google Scholar 

  • E. Oja, J. Math. Biol. 15, 267–273 (1982)

    MATH  MathSciNet  Google Scholar 

  • B.A. Olshausen, What is the other 85% of V1 doing? in and J. Leo van Hemmen, T.J. Sejnowski, Problems in Systems Neuroscience (Oxford University Press, 2004)

  • B.A. Olshausen, D.J. Field, Vis. Res. 37, 3311–25 (1998)

    Google Scholar 

  • G.A. Orban, D. Van Essen, W. Vanduffel, Trends Cogn. Sci. 8, 315–324 (2004) URL http://dx.doi.org/10.1016/j.tics.2004.05.009

    Google Scholar 

  • K.J. O'Regan, A. Noë, Behav. Brain Sci. 24 (2001)

  • C.C. Pack, A.J. Gartland, R.T. Born, J. Neurosci. 24, 3268–80 (2004) doi:10.1523/JNEUROSCI.4387-03.2004 URL http://dx.doi.org/10.1523/JNEUROSCI.4387-03.2004

    Google Scholar 

  • Y. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers (1993)

  • A.E.C. Pece, J. Math. Imag. Vis. 17, 89–108 (2002)

    MATH  MathSciNet  Google Scholar 

  • L.U. Perrinet, Nat. Comput. 3, 159–75 (2004a) doi:10.1023/B:NACO.0000027753.27593.a7 URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet04nc

  • L.U. Perrinet, J. Physiol. Paris 98, 530–9 (2004) doi:10.1016/j.jphysparis.2005.09.012 URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet04tauc URL http://hal.archives-ouvertes.fr/hal-00110801/en/

    Google Scholar 

  • L.U. Perrinet, Efficient Source Detection Using Integrate-and-Fire Neurons, ICANN 2005, LNCS 3696 Lecture Notes in Computer Science, edited by W. Duch et al. (Springer, Berlin Heidelberg, 2005), pp. 167–72, URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet05icann

  • L.U. Perrinet, An efficiency razor for model selection and adaptation in the primary visual cortex. In CNS (2006) URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet06cns

  • L.U. Perrinet, Apprentissage hebbien d'un reseau de neurones asynchrone a codage par rang. Technical report, Rapport de stage du DEA de Sciences Cognitives, CERT, Toulouse, France (1999)

  • L.U. Perrinet, M. Samuelides, S. Thorpe, Neurocomputing 57C, 125–34 (2002) URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet02sparse. Special Issue: New Aspects in Neurocomputing: 10th European Symposium on Artificial Neural Networks 2002, edited by T. Villmann

    Google Scholar 

  • L.U. Perrinet, M. Samuelides, S. Thorpe, Coding static natural images using spiking event times: do neurons cooperate? IEEE Trans. Neural Networks, Special Issue on Temporal Coding for Neural Information Processing, 15, 1164–75 (2004) ISSN 1045-9227 URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet03ieee. URL http://hal.archives-ouvertes.fr/hal-00110803/en/

  • L.U. Perrinet, F. Barthélemy, E. Castet, G.S. Masson, Dynamics of motion representation in short-latency ocular following: a two-pathways bayesian model, Perception, Vol. 34, edited by A. Ricardo Carmona, Gustavo Linan-Cembrano, of ECVP (2005), p. 38

  • L.U. Perrinet, F.V. Barthélemy, G.S. Masson, Input-output transformation in the visuo-oculomotor loop: modeling the ocular following response to center-surround stimulation in a probabilistic framework. In 1ère conférence francophone NEUROsciences COMPutationnelles – NeuroComp (2006) URL http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet06neurocomp

  • J. Petitot, J. Physiol. (Paris) 97, 265–309 (2003) URL http://dx.doi.org/10.1016/j.jphysparis.2003.10.010

    Google Scholar 

  • A. Pouget, Dynamic remapping, 2nd edn., edited by M.A. Arbib, in The Handbook of Brain Theory and Neural Networks (The MIT Press, Cambridge, MA, 2002)

  • C. Poynton, Frequently Asked Questions about Gamma, Technical report (1999)

  • D. Purves, R.B. Lotto, Why We See What We Do: An Empirical Theory of Vision (Sinauer Associates, Sunderland, Massachusetts, 2003) doi ISBN: 0-878-93752-8

  • R.P.N. Rao, B.A. Olshausen, M.S. Lewicki, (Eds.) Probabilistic Models of the Brain: Perception and Neural Function, (MIT Press, 2002)

  • R. Redondo, S. Fischer, L.U. Perrinet, G. Cristóbal, Modeling of simple cells through a sparse overcomplete gabor wavelet representation based on local Perception, Vol. 34 of ECVP inhibition and facilitations, edited by R.A. Carmona, G. Linan-Cembrano (2005), p. 238

  • D.L. Ringach, J. Neurophysiol. 88, 455–63 (2002)

    Google Scholar 

  • D.L. Ringach, R.M. Shapley, M.J. Hawken, J. Neurosci. 22, 5639–51 (2002)

    Google Scholar 

  • R.W. Rodieck, Vis. Res. 5, 583–601 (1965)

    Google Scholar 

  • E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault F. Varela, Nature 397, 430–3 (1999)

    ADS  Google Scholar 

  • F. Rosenblatt, Proc. I.R.E. 20, 167–192 (1960)

    MathSciNet  Google Scholar 

  • D.L. Ruderman, W. Bialek, Phys. Rev. Lett. 73, 551–8 (1994)

    Google Scholar 

  • P.A. Salin, J. Bullier, Physiol. Rev. 75, 1107–54 (1995)

    Google Scholar 

  • P. Sallee, B.A. Olshausen, Learning sparse multiscale image representations, Vol. 15, edited by M.I. Jordan, M.J. Kearns, S.A. Solla, in Advances in neural information processing systems (The MIT Press, Cambridge, MA, 2003), pp. 1327–34

  • O. Schwartz, E. Simoncelli, Nat. Neurosci. 4, 819–25 (2001)

    Google Scholar 

  • B. Sen, S. Furber, Information recovery from rank-order encoded images, in Workshop on Biologically Inspired Information Fusion University of Surrey (2006)

  • P. Seriès, S. Georges, J. Lorenceau, Y. Frégnac, Vis. Res. 42, 2781–97 (2002)

    Google Scholar 

  • C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, Urbana, 1964)

  • R.N. Shepard, J. Metzler, Science 171, 701–4 (1970)

    ADS  Google Scholar 

  • C.S. Sherrington, J. Physiol. 34, 1–50 (1906) URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1465804

    Google Scholar 

  • M. Sigman, G.A. Cecchi, C.D. Gilbert, M.O. Magnasco, Proc. Nat. Acad. Sci. USA 98, 1935–40 (2001)

    ADS  Google Scholar 

  • E.P. Simoncelli, W.T. Freeman, The Steerable Pyramid: A Flexible Architecture for Multi-Scale Derivative Computation. In Second International Conf. on Image Processing (Washington, DC, October, 1995)

  • E.P. Simoncelli, B.A. Olshausen, Annu. Rev. Neurosci. 24, 1193–216 (2001) URL http://dx.doi.org/10.1146/annurev.neuro.24.1.1193

    Google Scholar 

  • M.V. Srinivasan, S.B. Laughlin, A Dubs, Proc. R. Soc. Lond. B 216, 427–59 (1982)

    ADS  Google Scholar 

  • A. Turiel, G. Mato, N. Parga, J.-P. Nadal, Self-similarity properties of natural images, Vol. 10, edited by M.I. Jordan, M.J. Kearns, S.A. Solla Advances in Neural Information Processing Systems (The MIT Press, Cambridge, MA, 1998)

  • J.H. van Hateren, Vis. Res. 33, 257–67 (1993)

    Google Scholar 

  • J.H. van Hateren, A. van der Schaaf, Phil. Trans. R. Soc. Lond. B 265, 359–66 (1998)

    Google Scholar 

  • R. van Rullen, S.J Thorpe, Neural Comput. 13, 1255–83 (2001)

    MATH  Google Scholar 

  • T. Viéville, P. Kornprobst, Modeling cortical maps with feed-backs. In International Joint Conference on Neural Networks (2006)

  • H. von Helmholtz, Treatise on Physiological Optics, Vol. 3 (Optical Society of America, New York, 1925)

  • M.J. Wainwright, O. Schwartz, E.P. Simoncelli, Natural image statistics and divisive normalization: modeling nonlinearities and adaptation in cortical neurons in Statistical Theories of the Brain, edited by R. Rao, B. Olshausen, M. Lewicki (The MIT Press, 2001)

  • Y. Weiss, E.P. Simoncelli, E.H. Adelson, Nat. Neurosci. 5, 598–604 (2002) URL http://dx.doi.org/10.1038/nn858

    Google Scholar 

  • L. Wiskott, T.J. Sejnowski, Neural Comput. 14, 715–770 (2002)

    MATH  Google Scholar 

  • R.S. Zemel, T.J. Sejnowski, J. Neurosci. 18, 531–47 (1998)

    Google Scholar 

  • B. Cessac, M. Samuelides, Eur. Phys. J. Special Topics 142, 7–88 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Perrinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrinet, L. Dynamical neural networks: Modeling low-level vision at short latencies. Eur. Phys. J. Spec. Top. 142, 163–225 (2007). https://doi.org/10.1140/epjst/e2007-00061-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00061-7

Keywords

Navigation