Skip to main content
Log in

Chemically partitionless crystallization in near-eutectic rapidly solidified Al–12, 6Si–0, 8Mg–0, 4Mn–0, 7Fe–0, 9Ni–1, 8Cu alloy

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of the microstructure of the of the alloy Al–12.6 wt% Si–0.8 wt% Mg–0.4 wt% Mn–0.7 wt% Fe–0.9 wt% Ni–1.8 wt% Cu obtained by rapid quenching from the melt at an average melt cooling rate of \(10^5\) K/s. Using scanning electron microscopy and energy-dispersive X-rays spectroscopy, it was found that the foil has a layered microstructure in cross section, while the elemental composition is uniform in thickness. It is shown that in the foil layer adjacent to the mold, chemically partitionless crystallization proceeds with the formation of a supersaturated solid solution based on Al with a microcrystalline grain structure. A transition layer with a microstructure containing globular microdendritic areas has been found. It is shown that ultrafast quenching from the melt and the doping by alloying elements leads to the formation of silicon nanoparticles. A mechanism for the formation of a layered microstructure which consider changes in the solidification conditions at the solid–liquid interface, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. H. Kaya, A. Aker, Effect of alloying elements and growth rates on microstructure and mechanical properties in the directionally solidified Al-Si-X alloys. J. Alloy. Compd. 694, 145–154 (2016)

    Article  Google Scholar 

  2. O. Gursoy, G. Timelli, Lanthanides: a focused review of eutectic modification in hypoeutectic Al-Si alloys. J. Market. Res. 9(4), 8652–8666 (2020)

    Google Scholar 

  3. P. Pandee, C.M. Gourlay, S.A. Belyakov, U. Patakham, G. Zeng, C. Limmaneevichitr, AlS\(i_2\)S\(c_2\) intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J. Alloy. Compd. 731, 1159–1170 (2018)

    Article  Google Scholar 

  4. Qing Liu, Maowen Liu, Xu. Cong, Wenlong Xiao, Hiroshi Yamagata, Shenghui Xie, Chaoli Ma, Effects of Sr, Ce and P on the microstructure and mechanical properties of rapidly solidified Al-7Si alloys. Mater. Charact. 140, 290–298 (2018)

    Article  Google Scholar 

  5. C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Cooling rate and microstructure of rapidly solidified Al-20 wt.% Si alloy. Mater. Sci. Eng. A417, 275–280 (2006)

    Article  Google Scholar 

  6. C.B. Basak, Aditya Medur, N. Hari Babu, Influence of Ni in high Fe containing recyclable Al-Si cast alloys. Mater. Des. 182, 108017 (2019)

    Article  Google Scholar 

  7. H. Becker, T. Bergh, P.E. Vullum, A. Leineweber, Y. Li, SEffect of Mn and cooling rates on \(\alpha\)-, \(\beta\)- and \(\delta\)-Al-Fe-Si intermetallic phase formation in a secondary Al-Si alloy. Materialia 5, 100198–1002012 (2019)

    Article  Google Scholar 

  8. S. Seifeddinea, S. Johanssonb, I.L. Svenssona, The influence of cooling rate and manganese content on the \(\beta\) -Al5FeSi phase formation and mechanical properties of Al-Si-based alloys. Mater. Sci. Eng. A 490, 385–390 (2008)

    Article  Google Scholar 

  9. A. Darlapudi, S.D. McDonald, S. Terzi, A. Prasad, M. Felberbaum, D.H. StJohn, The influence of ternary alloying element son the Al-Si eutectic microstructure and the Si morphology. J. Cryst. Growth 433, 63–73 (2016)

    Article  ADS  Google Scholar 

  10. W.S. Ebhota, T.C. Jen, Intermetallics Formation and Their Effect on Mechanical Properties of Al-Si-X Alloys, Intermetallic Compounds - Formation and Applications, Chapter 2 (IntechOpen, New York, 2018)

    Google Scholar 

  11. M.M. Makhlouf, H.V. Guthy, The aluminum-silicon eutectic reaction: mechanisms and crystallography. J. Light Met. 1(4), 199–218 (2001)

    Article  Google Scholar 

  12. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al-Si-Cu-Mg cast alloy with additions of Ti, V, and Zr,. Thermochim. Acta 595, 11–16 (2014)

    Article  Google Scholar 

  13. K. Chang, S. Liu, D. Zhao, Y. Dua, D. Zhou, L. Zhou, Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation. Thermochim. Acta 512, 258–267 (2011)

    Article  Google Scholar 

  14. A.M. Mohamed, F.H. Samuel, S. Al-kahtani, Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys. Mater. Sci. Eng. A 577, 64–72 (2013)

    Article  Google Scholar 

  15. H. Jones, Formation of phase and microstrucnures by rapid solidification processing: an update. Mater. Sci. Eng. A 179, 14180-1-7 (1994)

  16. I. Johansen, H.J. Roven, Mechanical properties of a rapidly solidified Al-Si-Ni-Mn alloy. Mater. Sci. Eng. A179–A180, 605–608 (1994)

    Article  Google Scholar 

  17. O. Gusakova, V. Shepelevich, D. Alexandrov, I. Starodumov, Rapid quenching effect on the microstructure of Al-Si eutectic Zn-doped alloy. J. Cryst. Growth 531, 125333 (2020)

    Article  Google Scholar 

  18. V. Gaidarova, Structure modification of rapidly solidified Al-11wt.% Si alloy by the addition of 2wt% Fe. Vacuum 81, 1082–1087 (2007)

    Article  ADS  Google Scholar 

  19. Orhan Uzun, Tuncay Karaaslan, Mustafa Keskin, Production and structure of rapidly solidified Al-Si alloys. Turk. J. Phys. 25, 455–466 (2001)

    Google Scholar 

  20. M. Zuo, X.F. Liu, Q.Q. Sun, K. Jiang, Effect of rapid solidification on the microstructure and refining performance of an Al-Si-P master alloy. J. Mater. Process. Technol. 209(15–16), 5504–5508 (2009)

    Article  Google Scholar 

  21. P.Y. Li, H.J. Yu, S.C. Chai, Y.R. Li, Microstructure and properties of rapidly solidified powder metallurgy Al-Fe-Mo-Si alloys. Scripta Mater. 49, 819–824 (2003)

    Article  Google Scholar 

  22. Yong Lia, Tao Jiangb, Bowen Weib, Boyue Xub, Guangming Xub, Zhaodong Wanga, Microcharacterization and mechanical performance of an Al-50Si alloy prepared using the sub-rapid solidification technique. Mater. Lett. 263, 127287 (2020)

    Article  Google Scholar 

  23. C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Cooling rate and microstructure of rapidly solidified Al-20 wt.% Si alloy. Mater. Sci. Eng. A 417, 275–280 (2006)

    Article  Google Scholar 

  24. M.A. Martorano, J.D.T. Capocchi, Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu-8%Sn alloys. Int. J. Heat Mass Transf. 43, 2541–2552 (2000)

    Article  MATH  Google Scholar 

  25. P.S. We, F.B. Yeh, Heat transfer coefficient in rapid solidification of a liquid layer on a substrate. J. Heat Transf. 122, 792–800 (2000)

    Article  Google Scholar 

  26. P.K. Galenko, E.V. Abramova, D. Jou, D.M. Herlach, Solute trapping in rapid solidification of a binary dilute system: a phase-field study. Phys. Rev. V. E84, 041143 (2011)

    ADS  Google Scholar 

  27. P. Galenko, Solute trapping and diffusionless solidification in a binary system. Phys. Rev. V. E76, 031606 (2007)

    ADS  Google Scholar 

  28. P.K. Galenko, D.M. Herlach, Diffusionless crystal growth in a eutectic system during rapid solidification. J. Exp. Theor. Phys. 103, 150–158 (2006)

    Article  ADS  Google Scholar 

  29. D.M. Herlach, P. Galenko, D. Holland-Moritz, Metastable Solids from Undercooled Melts (Elsevier, Amsterdam, 2017)

    Google Scholar 

  30. O.V. Gusakova, P.K. Galenko, V.G. Shepelevich, D.V. Alexandrov, M. Rettenmayr, Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn-Bi eutectic alloy. Philos. Trans. R. Soc. A V. 377, 20180204 (2019)

    Article  ADS  MATH  Google Scholar 

  31. H. Hartmann, P.K. Galenko, D. Holland-Moritz, M. Kolbe, D.M. Herlach, O. Shuleshova, Nonequilibrium solidification in undercooled Ti45Al55 melts. J. Appl. Phys. 103, 073509 (2008)

    Article  ADS  Google Scholar 

  32. C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, D.M. Herlach, New evidence for the dual origin of anomalous eutectic structures in undercooled Ni-Sn alloys: in situ observations and EBSD characterization. Acta Mater. 59, 3915–3926 (2011)

    Article  ADS  Google Scholar 

  33. O. Gusakova, V. Shepelevich, D. Alexandrov, I. Starodumov, Formation of the microstructure of rapidly solidified hypoeutectic Al-Si alloy. Eur. Phys. J. Special Topics 229, 417–425 (2020)

    Article  ADS  Google Scholar 

  34. O.V. Gusakova, S.V. Gusakova, V.G. Shepelevich, Melt Cooling Rate Effect on the Microstrucutre of Al-Si Alloy Doped with Mg, Mn, Fe, Ni, and Cu. Phys. Metals Metallogr. 123(5), 500–506 (2022)

    Article  ADS  Google Scholar 

  35. G. Mi, P. Li, L. He, Structure and property of metal melt I: the number of residual bonds after solid-liquid phase changes. Sci. China Phys. Mech. Astron. 53, 1571–1577 (2010)

    Article  ADS  Google Scholar 

  36. P.K. Galenko, M.D. Krivilyov, Modeling of a transition to diffusionless dendritic growth in rapid solidification of a binary alloy. Comput. Mater. Sci. 45, 972–980 (2009)

    Article  Google Scholar 

  37. P.K. Galenko, D.A. Danilov, Linear morphological stability analysis of the solid-liquid interface in rapid solidification of a binary system. Phys. Rev. E 69, 051608 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. W. Kurz, D.J. Fisher, Fundamentals of Solidification (Institute of Computer Research, Moscow-Izhevsk, 2013). ((In Russ))

    Google Scholar 

  39. P.K. Galenko, D.A. Danilov, Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J. Cryst. Growth 197, 992–1002 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Gusakova.

Additional information

Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems. Guest editors: Liubov Toropova, Irina Nizovtseva.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakova, O. Chemically partitionless crystallization in near-eutectic rapidly solidified Al–12, 6Si–0, 8Mg–0, 4Mn–0, 7Fe–0, 9Ni–1, 8Cu alloy. Eur. Phys. J. Spec. Top. 232, 1281–1291 (2023). https://doi.org/10.1140/epjs/s11734-023-00855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00855-z

Navigation