Skip to main content
Log in

Unsteady, steady, and self-oscillatory modes of the bulk continuous crystallization with mass influx and withdrawal of product crystals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of operating modes of the crystallizer with allowance for the processes of nucleation and evolution of particles, removal of product crystals, and fines dissolution. The stationary and non-stationary analytical solutions describing various crystallization scenarios are derived. We show that the unsteady-state distributions of crystals approach their stationary distribution over time. In addition, the linear analysis of dynamic instability shows that the regions of oscillatory instability and absolute stability exist. These regions are divided by the neutral stability curve dependent of the physical parameters of crystallization process. We show that the oscillatory instability domain becomes wider when increasing the nucleation and growth rate constants. As a result, the process of volumetric crystallization under consideration can operate in a mode of self-oscillations sustained by a feedback between the nucleation rate and the process driving force (supersaturation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

No data were associated in the manuscript.

References

  1. A.D. Randolph, M.A. Larson, Theory of Particulate Processes (Academic Press, New York, 1988)

    Google Scholar 

  2. P.A. Larsen, D.B. Patience, J.B. Rawlings, IEEE Control Syst. Mag. 26, 70 (2006)

    MathSciNet  Google Scholar 

  3. M.R. Abu Bakar, Z.K. Nagy, A.N. Saleemi, C.D. Rielly, Cryst. Growth Des. 9, 1378 (2009)

    Article  Google Scholar 

  4. P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan, D. O’Grady, Org. Process Res. Dev. 9, 348 (2005)

    Article  Google Scholar 

  5. D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014)

    Article  Google Scholar 

  6. E. Makoveeva, D. Alexandrov, A. Ivanov, Math. Methods Appl. Sci. 44, 12244 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. D.V. Alexandrov, A.A. Ivanov, I.G. Nizovtseva, S. Lippmann, I.V. Alexandrova, E.V. Makoveeva, Crystals 12, 949 (2022)

    Article  Google Scholar 

  8. P.K. Galenko, L.V. Toropova, D.V. Alexandrov, G. Phanikumar, H. Assadi, M. Reinartz, P. Paul, Y. Fang, S. Lippmann, Acta Mater. 241, 118384 (2022)

    Article  Google Scholar 

  9. B.E. Anshuns, E. Ruckenstein, Chem. Eng. Sci. 28, 501 (1973)

    Article  Google Scholar 

  10. J. Nyvlt, J.W. Mullin, Chem. Eng. Sci. 25, 131 (1970)

    Article  Google Scholar 

  11. S.J. Lei, R. Shinnar, S. Katz, A.I. Ch. E. J. 17, 1459 (1970)

    Article  Google Scholar 

  12. Yu.A. Buyevich, V.V. Mansurov, I.A. Natalukha, Chem. Eng. Sci. 46, 2573 (1991)

    Article  Google Scholar 

  13. Yu.A. Buyevich, V.V. Mansurov, I.A. Natalukha, Chem. Eng. Sci. 46, 2579 (1991)

    Article  Google Scholar 

  14. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 365 (2020)

    Article  Google Scholar 

  15. U. Vollmer, J. Raisch, Control Eng. Pract. 9, 837 (2001)

    Article  Google Scholar 

  16. V.A. Ditkin, A.P. Prudnikov, Integral Transforms and Operational Calculus (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  17. G. von Doetsch, Anleitung zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation (R. Oldenbourg, München, 1967)

    MATH  Google Scholar 

  18. D.J. Wollkind, L.A. Segel, Philos. Trans. R. Soc. Lond. Ser. A. 268, 351 (1970)

    Article  ADS  Google Scholar 

  19. D.J. Wollkind, R.D. Notestine, IMA J. Appl. Math. 27, 85 (1981)

    Article  MathSciNet  Google Scholar 

  20. J.I.D. Alexander, D.J. Wollkind, R.F. Sekerka, J. Cryst. Growth 79, 849 (1986)

    Article  ADS  Google Scholar 

  21. M. Reinartz, M. Kolbe, D.M. Herlach, M. Rettenmayr, L.V. Toropova, D.V. Alexandrov, P.K. Galenko, JOM 74, 2420 (2022)

    Article  ADS  Google Scholar 

  22. H.E. Huppert, J. Fluid Mech. 212, 209 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.N. Hills, D.E. Loper, P.H. Roberts, Q. J. Appl. Math. 36, 505 (1983)

    Article  Google Scholar 

  24. V.T. Borisov, Theory of Two-Phase Zone of Metallic Ingot (Metallurgia, Moscow, 1987)

    Google Scholar 

  25. D.V. Alexandrov, A.O. Ivanov, J. Cryst. Growth 210, 797 (2000)

    Article  ADS  Google Scholar 

  26. D.V. Alexandrov, I.G. Nizovtseva, A.P. Malygin, H.-N. Huang, D. Lee, J. Phys. Condens. Matter 20, 114105 (2008)

    Article  ADS  Google Scholar 

  27. D.V. Alexandrov, A.A. Ivanov, J. Exp. Theor. Phys. 108, 821 (2009)

    Article  ADS  Google Scholar 

  28. M.G. Worster, J. Fluid Mech. 167, 481 (1986)

    Article  ADS  Google Scholar 

  29. A.C. Fowler, IMA J. Appl. Math. 35, 159 (1985)

    Article  ADS  Google Scholar 

  30. D.V. Alexandrov, Int. J. Heat Mass Transf. 47, 1383 (2004)

    Article  Google Scholar 

  31. D.V. Alexandrov, D.L. Aseev, Comp. Mater. Sci. 37, 1 (2006)

    Article  Google Scholar 

  32. I.G. Nizovtseva, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190248 (2020)

    Article  ADS  Google Scholar 

  33. V.V. Mansurov, Math. Comput. Modell. 14, 819 (1990)

    Article  Google Scholar 

  34. L.V. Toropova, D.V. Alexandrov, Sci. Rep. 12, 10997 (2022)

    Article  ADS  Google Scholar 

  35. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 375 (2020)

    Article  Google Scholar 

  36. L.V. Toropova, E.V. Makoveeva, S.I. Osipov, A.P. Malygin, Y. Yang, D.V. Alexandrov, Crystals 12, 895 (2022)

    Article  Google Scholar 

  37. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 378, 20190247 (2020)

    Article  ADS  Google Scholar 

  38. D.V. Alexandrov, P.K. Galenko, Philos. Trans. R. Soc. A 379, 20200325 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Russian Science Foundation (Project no. 22-79-00141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov.

Additional information

Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems. Guest editors: Liubov Toropova, Irina Nizovtseva.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makoveeva, E.V., Alexandrov, D.V. Unsteady, steady, and self-oscillatory modes of the bulk continuous crystallization with mass influx and withdrawal of product crystals. Eur. Phys. J. Spec. Top. 232, 1199–1205 (2023). https://doi.org/10.1140/epjs/s11734-023-00852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00852-2

Navigation