Skip to main content
Log in

Dynamics of a perturbed random neuronal network with burst-timing-dependent plasticity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Neuroplasticity, also known as brain plasticity or neuronal plasticity, allows the brain to improve its connections or rewire itself. The synaptic modifications can help the brain to enhance fitness, to promote existing cognitive capabilities, and to recover from some brain injuries. Furthermore, brain plasticity has impacts on neuronal synchronisation. In this work, we build a neuronal network composed of coupled Rulkov neurons with excitatory connections randomly distributed. We consider burst-timing-dependent plasticity to investigate the effects of external perturbations, such as periodic and random pulses, on the neuronal synchronous behaviour. The plasticity changes the synaptic weights between the presynaptic and postsynaptic neurons, and as a consequence the burst synchronisation. We verify that the external periodic and random pulsed perturbations can induce synchronisation and desynchronisation states. One of our main results is to demonstrate that bursting synchronisation and desynchronisation in a network with burst-timing-dependent plasticity can emerge according to alterations of the initial synaptic weights. Furthermore, we show that external periodic and random pulsed currents can be an effective method to suppress neuronal activities related to pathological synchronous behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.W. Toga, P.M. Thompson, Mapping brain asymmetry. Nat. Rev. Neurosci. 4, 37 (2003)

    Article  Google Scholar 

  2. S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Article  Google Scholar 

  3. S. Ciocchi, J. Passecker, H. Malagon-Vina, N. Mikus, T. Klausberger, Selective information routing by ventral hippocampal CA1 projection neurons. Science 348, 560 (2015)

    Article  ADS  Google Scholar 

  4. A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014)

    Article  Google Scholar 

  5. G. Berlucchi, H.A. Buchtel, Neuronal plasticity: historical roots and evolution of meaning. Exp. Brain Res. 192, 307 (2009)

    Article  Google Scholar 

  6. H. Markram, W. Gerstner, P.J. Sjöström, A history of spike-timing-dependent plasticity. Front. Synapt. Neurosci. 3, 4 (2011)

    Article  Google Scholar 

  7. P. Mateos-Aparicio, A. Rodríguez-Moreno, The impact of studying brain plasticity. Front. Cell. Neurosci. 13, 66 (2019)

    Article  Google Scholar 

  8. S. Ramón y Cajal, Textura del Sistema Nervioso del Hombre y de los Vertebrados, Madrid: Moya (1899/1904)

  9. S. Ramón y Cajal, El nuevo concepto de la histología en los centros nerviosos. Rev. Ciencias Méd. Barcelona 18, 361–376 (1892). (457–476, 505–520, 529–541)

    Google Scholar 

  10. J. Konorski, Conditioned Reflexes and Neuron Organization (Cambridge University Press, Cambridge, 1948)

    Google Scholar 

  11. D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949)

    Google Scholar 

  12. E.L. Lameu, E.E.N. Macau, F.S. Borges, K.C. Iarosz, I.L. Caldas, R.R. Borges, P.R. Protachevicz, R.L. Viana, A.M. Batista, Alterations in brain connectivity due to plasticity and synaptic delay. Eur. Phys. J. Spec. Top. 227, 673 (2018)

    Article  Google Scholar 

  13. R.R. Borges, F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, I.L. Caldas, C.G. Antonopoulos, M.S. Baptista, Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw. 88, 58 (2017)

    Article  Google Scholar 

  14. R.R. Borges, F.S. Borges, E.L. Lameu, P. Prottachevicz, K.C. Iarosz, I.L. Caldas, R.L. Viana, E.E.N. Macau, M.S. Baptista, C. Grebogi, A.M. Batista, Synaptic plasticity and spike synchronisation in neuronal networks. Braz. J. Phys. 47, 678 (2017)

    Article  ADS  Google Scholar 

  15. D.A. Butts, P.O. Kanold, C.J. Shatz, A burst-based“Hebbian’’ learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol. 5, e61 (2007)

    Article  Google Scholar 

  16. Z. Wang, S. Baruni, F. Parastesh, S. Jafari, D. Ghosh, M. Perc, I. Hussain, Chimeras in an adaptive neuronal network with burting-timing dependent plasticity. Neurocomputing 406, 117 (2020)

    Article  Google Scholar 

  17. J. Gjorgjieva, T. Toyoizumi, S.J. Eglen, Burst-time-dependent plasticity robustly guides on/off segregation in the lateral geniculate nucleus. PLoS Comput. Biol. 5, e1000618 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Deco, A. Buehlmann, T. Masquelier, E. Hugues, The role of rhythmic neural synchronisation in rest and task conditions. Front. Hum. Neurosci. 5, 4 (2011)

    Article  Google Scholar 

  19. L.L. Rubchinsky, C. Park, R.M. Worth, Intermittent neural synchronisation in Parkinson’s disease. Nonlinear Dyn. 68, 329 (2012)

    Article  Google Scholar 

  20. C. Babiloni, C. Del Percio, R. Lizio, G. Noce, S. Cordone, S. Lopez, A. Soricelli, R. Ferri, M.T. Pascarelli, F. Nobili, D. Arnaldi, F. Famà, D. Aarsland, F. Orzi, C. Buttinelli, F. Giubilei, M. Onofrj, F. Stocchi, P. Stirpe, P. Fuhr, U. Gschwandtner, G. Ransmayr, G. Caravias, H. Garn, F. Sorpresi, M. Pievani, F. D’Antonio, C. De Lena, B. Güntekin, L. Hanoglu, E. Basar, G. Yener, D.D. Emek-Savas, A.I. Triggiani, R. Franciotti, G.B. Frisoni, L. Banonni, M.F. De Pandis, Abnormalities of cortical neural synchronisation mechanisms in subjects with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases: an EEG study. J. Alzheimers Dis. 59, 339 (2017)

    Article  Google Scholar 

  21. J.A.P. Silveira, P.R. Protachevicz, R.L. Viana, A.M. Batista, Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network. Neurocomputing 436, 126 (2021)

    Article  Google Scholar 

  22. E.L. Lameu, F.S. Borges, R.R. Borges, A.M. Batista, M.S. Baptista, R.L. Viana, Network and external perturbation induce burst synchronisation in cat cerebral cortex. Commun. Nonlinear Sci. Numer. Simulat. 34, 45 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Hansen, P.R. Protachevicz, K.C. Iarosz, I.L. Caldas, A.M. Batista, E.E.N. Macau, Dynamics of uncoupled and coupled neurons under an external pulsed current. Chaos Solitons Fractals 155, 111734 (2022)

    Article  Google Scholar 

  24. P. Boon, K. Vonck, V. De Herd, A. Van Dycke, M. Goethals, L. Goossens, M. Van Zandijcke, T. De Smedt, I. Dewaele, R. Achten, W. Wadman, F. Dewaele, J. Caemaert, D. Van Roost, Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48, 1551 (2007)

    Article  Google Scholar 

  25. W.-J. Wang, Y.-B. Zhong, J.-J. Zhao, M. Ren, S.-C. Zhang, M.-S. Xu, S.-T. Xu, Y.-J. Zhang, C.-L. Shan, Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke. Neural Regen. Res. 16, 1229 (2021)

    Article  Google Scholar 

  26. S. Jaberzadeh, A. Bastani, M. Zoghi, P. Morgan, P.B. Fitzgerald, Anodal transcranial pulsed current stimulation: the effects of pulse duration on corticospinal excitability. PLoS One 10, e0131779 (2015)

    Article  Google Scholar 

  27. B.R.R. Boaretto, R.C. Budzinski, T.L. Prado, S.R. Lopes, Suppression of phase synchronization in scale-free neural networks using external pulsed current protocols. Math. Comput. Appl. 24, 46 (2019)

    MathSciNet  Google Scholar 

  28. P. Erdös, A. Rényi, On random graphs. Publ. Math. Debrecen 6, 290 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. N.F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. G. Buzsaki, Rhythms of the brains (Oxford University Press, Oxford, 2006)

    Book  MATH  Google Scholar 

  31. M.V. Ivanchenko, G.V. Osipov, V.D. Shalfeev, J. Kurths, Phase synchronization in resembles of bursting oscillators. Phys. Rev. Lett. 93, 134101 (2004)

    Article  ADS  Google Scholar 

  32. Y. Kuramoto, Chemical Oscillations, wavws, and Turbulence, vol. 19 (Springer Science Business Media, New York, 2012)

    Google Scholar 

  33. F.S. Borges, P.R. Protachevicz, V. Santos, M.S. Santos, E.C. Gabrick, K.C. Iarosz, E.L. Lameu, M.S. Baptista, I.L. Caldas, A.M. Batista, Influence of inhibitory synapses on the criticality of excitable neuronal networks, Indian Academy of Sciences Conference Series 3 (2020)

  34. S. Stevens, Psychophysics (Transaction Publisher, New Jersey, 1975)

    Google Scholar 

  35. I. Franovic, V. Miljkovic, The effects of synaptic time delay on motifs of chemically coupled Rulkov model neurons. Commun. Nonlinear. Sci. Numer. Simulat. 16, 623 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  37. A. Frieze, M. KaronskiMichal, Introduction to Random Graphs (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

Download references

Acknowledgements

This work was possible by partial financial support from the following Brazilian government agencies: São Paulo Research Foundation (FAPESP, Brazil) (Grant no. 2019/09150-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), National Council for Scientific and Technological Development (CNPq), and Fundação Araucária.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly C. Iarosz.

Additional information

Collective Behavior of Nonlinear Dynamical Oscillators. Guest editors: Sajad Jafari, Bocheng Bao, Christos Volos, Fahimeh Nazarimehr, Han Bao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayari, E., Batista, A.M., Gabrick, E.C. et al. Dynamics of a perturbed random neuronal network with burst-timing-dependent plasticity. Eur. Phys. J. Spec. Top. 231, 4049–4056 (2022). https://doi.org/10.1140/epjs/s11734-022-00694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00694-4

Navigation