Skip to main content
Log in

MHD mixed convection on Cu-water laminar flow through a horizontal channel attached to two open porous enclosure

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A numerical study was conducted to determine the impact of MHD on mixed convection of a Cu-water nanofluid in a horizontal channel attached to two open enclosures filled with a porous material is implemented in this paper. Uniform heat is supplied on the base of the two enclosures while the other walls are considered adiabatic. The finite element method has been utilized in this study to solve the considered equations and other numerical simulations that needed to be validated, assessed with previous papers to ensure that the model works correctly. Furthermore, this study considers a range of each of the Reynolds number (Re \(=\) 25, 50, 100, 150, 200), Richardson number (Ri \(=\) 0.1, 1, 3, 5, 8, 10) and the Hartmann number (Ha \(=\) 0, 5, 10, 15, 30, 50) at a constant volume fraction (\(\upvarphi =\) 0.08) and porous media properties (Da \(=\) 10-2, and \(\upvarepsilon =\) 0.7). The results stated that the strength of the streamlines, isotherms, and the average Nusselt number (Nu\(_\mathrm{avg})_{\, }\)increases with increasing values of the Richardson and Reynolds numbers while they decrease upon increasing the Hartmann number. The result shows that no big difference between cases 2 and 3, and the maximum enhancement in Nu\(_\mathrm{avg}\) is 9.84% in case 2 compared with case 1 at Re = 200, Ri = 1, and Ha = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cp:

Specific heat

Da:

Darcy number

g :

Gravitational acceleration

h :

Convection heat transfer coefficient

H :

Channel height

Ha:

Hartmann number

k :

Thermal conductivity

K :

Permeability

Nu:

Nusselt number

P :

Non-dimensional pressure

p :

Pressure

Pr:

Prandtl number

Ra:

Rayleigh Number

Re:

Reynolds number

Ri:

Richardson number

T :

Dimensional temperature

U :

Non-dimensional velocity component X-direction

V :

Non-dimensional velocity component Y-direction

X :

Non-dimensional X-coordinates

Y :

Non-dimensional Y-coordinates

\(\nu \) :

Kinematic viscosity

\(\upvarphi \) :

Solid volume fraction

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density

\(\mu \) :

Dynamic viscosity

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Thermal expansion coefficient

\(\upvarepsilon \) :

porosity

avg:

Average

c:

Cold

f:

Fluid (pure water)

h:

Hot

In:

Inlet

loc:

Local

nf:

Nanofluid

o:

Outlet

s:

Solid

References

  1. H.-T. Chen et al., Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters. Int. J. Heat Mass Transf. 118, 931–947 (2018)

    Article  Google Scholar 

  2. Z.-Y. Li, Z. Huang, W.-Q. Tao, Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube. Energy 113, 1288–1303 (2016)

    Article  Google Scholar 

  3. D.-H. Shin et al., Experimental analysis on mixed convection in reactor cavity cooling system of HTGR for hydrogen production. Int. J. Hydrogen Energy 42(34), 22046–22053 (2017)

    Article  Google Scholar 

  4. V.K. Mattew, T.K. Hotta, Role of PCM based mini-channels for the cooling of multiple protruding IC chips on the SMPS board–a numerical study. J. Energy Storage 26, 5 (2019)

    Google Scholar 

  5. A. Zaman, A.A. Khan, Time dependent non-Newtonian nano-fluid (blood) flow in w-shape stenosed channel; with curvature effects. Math. Comput. Simul. 181, 82–97 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. K.K. Al-Chlaihawi et al., Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: a review. Heat Transfer 2021, 5 (2021)

    Google Scholar 

  7. A.D. Abdulsahib, K. Al-Farhany, Review of the effects of stationary/rotating cylinder in a cavity on the convection heat transfer in porous media with/without nanofluid. Math. Model. Eng. Probl. 8(3), 356–364 (2021)

    Article  Google Scholar 

  8. D.S. Cimpean, M.A. Sheremet, I. Pop, Mixed convection of hybrid nanofluid in a porous trapezoidal chamber. Int. Commun. Heat Mass Transfer 116, 5 (2020)

    Article  Google Scholar 

  9. M.A. El-Shorbagy et al., Numerical investigation of mixed convection of nanofluid flow in a trapezoidal channel with different aspect ratios in the presence of porous medium. Case Stud. Thermal Eng. 25, 5 (2021)

    Article  Google Scholar 

  10. M.H. Hasib, M.S. Hossen, S. Saha, Effect of tilt angle on pure mixed convection flow in trapezoidal cavities filled with water-Al2O3 nanofluid. Procedia Eng. 105, 388–397 (2015)

    Article  Google Scholar 

  11. W. Ibrahim, M. Hirpho, Finite element analysis of mixed convection flow in a trapezoidal cavity with non-uniform temperature. Heliyon 7(1), e05933 (2021)

    Article  Google Scholar 

  12. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int. Commun. Heat Mass Transfer 87, 40–51 (2017)

    Article  Google Scholar 

  13. S.D.A.S. Zaharuddin et al., Buoyant Marangoni convection of nanofluids in right-angled trapezoidal cavity. Numer. Heat Transfer Part A: Appl. 78(10), 656–673 (2020)

    Article  ADS  Google Scholar 

  14. M.A. Alomari et al., Numerical study of mhd natural convection in trapezoidal enclosure filled with (50%mgo-50%ag/water) hybrid nanofluid: Heated sinusoidal from below. Int. J. Heat Technol. 39(4), 1271–1279 (2021)

    Article  Google Scholar 

  15. K. Al-Farhany et al., MHD mixed convection of a Cu-water nanofluid flow through a channel with an open trapezoidal cavity and an elliptical obstacle. Heat Transfer 2021, 2 (2021)

    Google Scholar 

  16. H. Laouira et al., Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transfer-Asian Res. 49(1), 406–423 (2020)

    Article  Google Scholar 

  17. Y. Stiriba, J.A. Ferré, F.X. Grau, Heat transfer and fluid flow characteristics of laminar flow past an open cavity with heating from below. Int. Commun. Heat Mass Transfer 43, 8–15 (2013)

    Article  Google Scholar 

  18. K. Javaherdeh, Numerical simulation of power-law fluids flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Case Stud. Therm. Eng. 3, 68–78 (2014)

    Article  Google Scholar 

  19. G. Abdelmassih, A. Vernet, J. Pallares, Steady and unsteady mixed convection flow in a cubical open cavity with the bottom wall heated. Int. J. Heat Mass Transfer 101, 682–691 (2016)

    Article  Google Scholar 

  20. F. García et al., Numerical study of buoyancy and inclination effects on transient mixed convection in a channel with two facing cavities with discrete heating. Int. J. Mech. Sci. 155, 295–314 (2019)

    Article  Google Scholar 

  21. V. Cárdenas et al., Experimental study of buoyancy and inclination effects on transient mixed convection heat transfer in a channel with two symmetric open cubic cavities with prescribed heat flux. Int. J. Therm. Sci. 140, 71–86 (2019)

    Article  Google Scholar 

  22. K. Al-Farhany, M.A. Alomari, A.E. Faisal, Magnetohydrodynamics mixed convection effects on the open enclosure in a horizontal channel Heated Partially from the Bottom. IOP Conf. Ser.: Mater. Sci. Eng. 870, 012174 (2020)

    Article  Google Scholar 

  23. K.V. Prasad et al., MHD flow of a ucm nanofluid in a permeable channel: Buongiorno’s model. Int. J. Appl. Comput. Math. 6(4), 126 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. R.P. Mehta, H.R. Kataria, Influence of magnetic field, thermal radiation and brownian motion on water-based composite nanofluid flow passing through a porous medium. Int. J. Appl. Comput. Math. 7(1), 7 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Siddabasappa, Unsteady magneto-hydrodynamic flow through saturated porous medium with thermal non-equilibrium and radiation effects. Int. J. Appl. Comput. Math. 6(3), 66 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Karbasifar, M. Akbari, D. Toghraie, Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int. J. Heat Mass Transfer 116, 1237–1249 (2018)

    Article  Google Scholar 

  27. Z. Mehmood, Numerical simulations and linear stability analysis of mixed thermomagnetic convection through two lid-driven entrapped trapezoidal cavities enclosing ferrofluid saturated porous medium. Int. Commun. Heat Mass Transfer 109, 5 (2019)

    Article  Google Scholar 

  28. A. Mojtabi et al., Analytical and numerical study of Soret mixed convection in two sided lid-driven horizontal cavity: Optimal species separation. Int. J. Heat Mass Transfer 139, 1037–1046 (2019)

    Article  Google Scholar 

  29. R.K. Ajeel, W.S.I.W. Salim, K. Hasnan, Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped. Case Stud. Therm. Eng. 12, 620–635 (2018)

    Article  Google Scholar 

  30. M. Hatami et al., Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes. Case Stud. Therm. Eng. 13, 5 (2019)

    Article  Google Scholar 

  31. K. Ramesh, M. Rawal, A. Patel, Numerical simulation of radiative MHD Sutterby nanofluid flow through porous medium in the presence of hall currents and electroosmosis. Int. J. Appl. Comput. Math. 7(2), 30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Hazarika, S. Ahmed, A.J. Chamkha, Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling. Math. Comput. Simul. 182, 819–837 (2021)

    Article  MATH  Google Scholar 

  33. M. Hatami, H. Safari, Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure. Int. J. Heat Mass Transfer 103, 1053–1057 (2016)

    Article  Google Scholar 

  34. S. Das, R.N. Jana, O.D. Makinde, Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids. Eng. Sci. Technol. Int. J. 18(2), 244–255 (2015)

    Google Scholar 

  35. M. Benzema et al., Numerical mixed convection heat transfer analysis in a ventilated irregular enclosure crossed by Cu-Water nanofluid. Arab. J. Sci. Eng. 42(10), 4575–4586 (2017)

    Article  Google Scholar 

  36. S. Hussain et al., Magnetohydrodynamic flow and heat transfer of ferrofluid in a channel with non-symmetric cavities. J. Therm. Anal. Calorim. 140(2), 811–823 (2019)

    Article  Google Scholar 

  37. K. Al-Farhany et al., Numerical investigation of natural convection on Al2O3-water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects. Appl. Nanosci. (Switzerl.) 2021, 5 (2021)

    Google Scholar 

  38. K. Al-Farhany et al., Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure. Int. Commun. Heat Mass Transfer 126, 5 (2021)

    Article  Google Scholar 

  39. H. Kahalerras, B. Fersadou, W. Nessab, Mixed convection heat transfer and entropy generation analysis of copper-water nanofluid in a vertical channel with non-uniform heating. SN Appl. Sci. 2, 1 (2019)

    Google Scholar 

  40. A.M. Rashad et al., Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)

    Article  Google Scholar 

  41. A. Chamkha, F. Selimefendigil, MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. Entropy 20, 10 (2018)

    Article  Google Scholar 

  42. S.H. Hussain, M.S. Rahomey, Comparison of natural convection around a circular cylinder with different geometries of cylinders inside a square enclosure filled with Ag-nanofluid superposed porous-nanofluid layers. J. Heat Transfer 141(2), 022501 (2019)

    Article  Google Scholar 

  43. B.M. Al-Srayyih, S. Gao, S.H. Hussain, Effects of linearly heated left wall on natural convection within a superposed cavity filled with composite nanofluid-porous layers. Adv. Powder Technol. 30(1), 55–72 (2019)

    Article  Google Scholar 

  44. G.A. Sheikhzadeh et al., Natural convection of Cu-water nanofluid in a cavity with partially active side walls. Eur. J. Mech. B. Fluids 30(2), 166–176 (2011)

    Article  ADS  MATH  Google Scholar 

  45. F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech. Sci. 124, 95–108 (2017)

    Article  Google Scholar 

  46. A.J. Chamkha, F. Selimefendigil, M.A. Ismael, Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer. Heat Transfer Part A: Appl. 69(6), 659–675 (2016)

    Article  ADS  Google Scholar 

  47. R.L. Frederick, S.G. Moraga, Three-dimensional natural convection in finned cubical enclosures. Int. J. Heat Fluid Flow 28(2), 289–298 (2007)

    Article  Google Scholar 

  48. D. Song et al., Prediction of hydrodynamic and optical properties of TiO2/water suspension considering particle size distribution. Int. J. Heat Mass Transfer 92, 864–876 (2016)

    Article  Google Scholar 

  49. M. Hatami, M. Sheikholeslami, G. Domairry, High accuracy analysis for motion of a spherical particle in plane Couette fluid flow by Multi-step differential transformation method. Powder Technol. 260, 59–67 (2014)

    Article  Google Scholar 

  50. O. Manca et al., Effect of heated wall position on mixed convection in a channel with an open cavity. Numer. Heat Transfer Part A: Appl. 43(3), 259–282 (2003)

    Article  ADS  Google Scholar 

  51. Z. Mehrez et al., Heat transfer and entropy generation analysis of nanofluids flow in an open cavity. Comput. Fluids 88, 363–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Hussain et al., Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium. Int. Commun. Heat Mass Transfer 89, 198–210 (2017)

    Article  Google Scholar 

  53. M.B. Ben-Hamida, M. Hatami, Investigation of heated fins geometries on the heat transfer of a channel filled by hybrid nanofluids under the electric field. Case Stud. Therm. Eng. 28, 101450 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Al-Farhany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Farhany, K., Alomari, M.A., Albattat, A. et al. MHD mixed convection on Cu-water laminar flow through a horizontal channel attached to two open porous enclosure. Eur. Phys. J. Spec. Top. 231, 2851–2864 (2022). https://doi.org/10.1140/epjs/s11734-022-00589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00589-4

Navigation