Skip to main content
Log in

Hopf bifurcation and its control in a 3D autonomous system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The first section of this paper discusses the stability and Hopf bifurcation for a new dynamical system using stability theory, the center manifold as well as normal form theory. To verify the analytical results, numerical simulations are performed. The second section focuses on controlling the Hopf bifurcation with a robust controller capable of handling a wide range of parameter values. By fine tuning the control parameters, the controller ensures that Hopf bifurcation occurred at \(P_{0}\). Furthermore, we postpone the Hopf bifurcation at \(P_{+}\) by adjusting the control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.H.K. Lee, S.J. Price, Y.S. Wong, Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog. Aerosp. Sci. 35, 205–334 (1999)

    Article  Google Scholar 

  2. S.H. Strogatz, Nonlinear Dynamics, and chaos: with applications to physics, biology, chemistry, and engineering (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  3. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Yu, G. Chen, Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurcation Chaos 14, 1683–1704 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Cai, Z.Z. Yuan, Hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy. Chin. J. Phys. 55, 64–70 (2017)

    Article  MathSciNet  Google Scholar 

  6. Z. Wei, I. Moroz, Z. Wang et al., Dynamics at infinity, degenerate Hopf and zero-Hopf bifurcation for Kingni-Jafari system with hidden attractors. Int. J. Bifurcation Chaos 26, 1650125 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.S. Tang, Ping Cai, Z.B. Li, Controlling Hopf bifurcation of a new modified hyperchaotic Lü system. Math. Problems Eng. 2015, (2015)

  8. Q. Yang, Z. Wei, Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217, 422–429 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Z. Wang, W. Sun, Z. Wei et al., Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82, 577–588 (2015)

    Article  MathSciNet  Google Scholar 

  10. J. Liu, J. Guan, Z. Feng, Hopf bifurcation analysis of KdV-Burgers-Kuramoto chaotic system with distributed delay feedback. Int. J. Bifurcation Chaos 29, 1950011 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.K. Tiba, A.F. Araujo, Control strategies for Hopf bifurcation in a chaotic associative memory. Neurocomputing 323, 157–174 (2019)

    Article  Google Scholar 

  12. C.J. Xu, Y.S. Wu, Chaos control and bifurcation behavior for a Sprott E system with distributed delay feedback. Int. J. Autom. Comput. 12, 182–191 (2015)

    Article  Google Scholar 

  13. D.S. Chen, H.O. Wang, G. Chen, Anti-control of Hopf bifurcations. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 661–672 (2001)

    Article  MathSciNet  Google Scholar 

  14. Y. Liu, S. Pang, D. Chen, An unusual chaotic system and its control. Math. Comput. Model. 57, 2473–2493 (2013)

    Article  MathSciNet  Google Scholar 

  15. C.K. Tse, Y.M. Lai, H.H.C. Iu, Hopf bifurcation and chaos in a free-running current-controlled Cuk switching regulator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 448–457 (2000)

    Article  Google Scholar 

  16. W.J. Du, Y.D. Chu, Y.X. Chang et al., Control of Hopf bifurcation in Autonomous Systems Based on Washout Filter. J. Appl. Math. 2013, 482351 (2013)

    MathSciNet  MATH  Google Scholar 

  17. D. Kim, P.H. Chang, A new butterfly-shaped chaotic attractor. Results Phys. 3, 14–19 (2013)

    Article  ADS  Google Scholar 

  18. A. Wolf, J.B. Swift, H.L. Swinney et al., Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. F.S. Dias, L.F. Mello, J.G. Zhang, Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real-World Appl. 11, 34913500 (2010)

    Article  MathSciNet  Google Scholar 

  20. B.D. Hassard, N.D. Kazarinoff, Y. Wan, Theory and Applications of Hopf Bifurcation (Cambridge University Press, London, UK, 1981)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Science Foundation of China (Nos. 11772148, 11872201, 12172166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangqiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Kabbah, A. Hopf bifurcation and its control in a 3D autonomous system. Eur. Phys. J. Spec. Top. 231, 2115–2124 (2022). https://doi.org/10.1140/epjs/s11734-022-00488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00488-8

Navigation