Skip to main content

Advertisement

Log in

Non-integer order chaotic systems: numerical analysis and their synchronization scheme via M-backstepping technique

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This research deals with a comparative numerical analysis of chaos in two systems with non-integer derivatives. The one-scroll system and circle equilibrium system with different hidden attractors are simulated considering the fractal derivative, Khalil and Atangana conformable derivatives, and the truncated M-derivative considering a constant and variable-order. Phase portraits are shown, as well as bifurcation diagrams, and Lyapunov exponents are obtained. Later, 0–1 test, dynamic death analysis, and sensitivity to initial conditions are considered to choose which derivative produces richer chaotic behaviors. According to those mentioned above, we could observe that the M-derivative not only generalizes Khalil’s type conformable derivative but also its two non-integer orders produce interesting dynamic behaviors compared to the remaining derivatives. In the numerical results, we observe that the variable order makes the system more sensitive to the change in the initial conditions. The new chaotic behaviors with constant and variable order are used to develop a synchronization scheme of two identical one-scroll systems via the backstepping technique with the truncated M-derivative involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. B. Acay, A. Khan, A. Yusuf et al., Fractional methicillin-resistant Staphylococcus aureus infection model under caputo operator. J. Appl. Math. Comput. 1–29, 2021 (2021)

    MathSciNet  MATH  Google Scholar 

  2. R.T. Alqahtani, A. Yusuf, R.P. Agarwal, Mathematical analysis of oxygen uptake rate in continuous process under caputo derivative. Mathematics 9(6), 675 (2021)

    Article  Google Scholar 

  3. R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. F.M. Alharbi, D. Baleanu, A. Ebaid, Physical properties of the projectile motion using the conformable derivative. Chin. J. Phys. 58, 18–28 (2019)

    Article  Google Scholar 

  5. Y. Wang, Dynamic analysis and synchronization of conformable fractional-order chaotic systems. Eur. Phys. J. Plus 133(11), 481 (2018)

    Article  Google Scholar 

  6. S. He, K. Sun, H. Wang, Dynamics and synchronization of conformable fractional-order hyperchaotic systems using the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 73, 146–164 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional Grey system model. ISA Trans. 1, 1–13 (2019)

    Google Scholar 

  8. B. Xin, W. Peng, Y. Kwon, Y. Liu, Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk. Adv. Differ. Equ. 2019(1), 138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Atangana, M.A. Khan, Validity of fractal derivative to capturing chaotic attractors. Chaos Solit. Fract. 126, 50–59 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. U.N. Katugampola. A new fractional derivative with classical properties. arXiv:1410.6535 (2014), pp. 1–12

  11. U.N. Katugampola, New fractional integral unifying six existing fractional integrals. arXiv:1612.08596 (2016), pp. 1–13

  12. T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative. Open Math. 35(1), 1–12 (2015)

    MathSciNet  MATH  Google Scholar 

  14. A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)

    Article  Google Scholar 

  15. A. Atangana, S.C. Oukouomi-Noutchie, Model of break-bone fever via beta-derivatives. Biomed. Res. Int. 1, 1–8 (2014)

    Google Scholar 

  16. A. Atangana, B.S.T. Alkahtani, Modeling the spread of rubella disease using the concept of with local derivative with fractional parameter: beta-derivative. Complexity 21(6), 442–451 (2016)

    Article  MathSciNet  Google Scholar 

  17. H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Complete analysis and engineering applications of a megastable nonlinear oscillator. Int. J. Non-Linear Mech. 107, 126–136 (2018)

    Article  ADS  Google Scholar 

  18. H. Jahanshahi, A. Yousefpour, Z. Wei, R. Alcaraz, S. Bekiros, A financial hyperchaotic system with coexisting attractors: dynamic investigation, entropy analysis, control and synchronization. Chaos Solit. Fract. 126, 66–77 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. O. Kolebaje, O. Popoola, M.A. Khan, O. Oyewande, An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative. Chaos Solit. Fract. 139, 109970 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.M. Chu, S. Bekiros, E. Zambrano-Serrano, O. Orozco-López, S. Lahmiri, H. Jahanshahi, A.A. Aly, Artificial macro-economics: a chaotic discrete-time fractional-order laboratory model. Chaos Solit. Fract. 145, 110776 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Jahanshahi, K. Shanazari, M. Mesrizadeh, S. Soradi-Zeid, J.F. Gómez-Aguilar, Numerical analysis of Galerkin meshless method for parabolic equations of tumor angiogenesis problem. Eur. Phys. J. Plus 135(11), 1–23 (2020)

    Article  Google Scholar 

  22. M.A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 59(4), 2379–2389 (2020)

    Article  Google Scholar 

  23. J.F. Li, H. Jahanshahi, S. Kacar, Y.M. Chu, J.F. Gómez-Aguilar, N.D. Alotaibi, K.H. Alharbi, On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solit. Fract. 145, 110681 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.A.A. Oud, A. Ali, H. Alrabaiah, S. Ullah, M.A. Khan, S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 2021(1), 1–19 (2021)

    MathSciNet  Google Scholar 

  25. H. Jahanshahi, O. Orozco-López, J.M. Munoz-Pacheco, N.D. Alotaibi, C. Volos, Z. Wang, Y.M. Chu, Simulation and experimental validation of a non-equilibrium chaotic system. Chaos Solit. Fract. 143, 110539 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Awais, F.S. Alshammari, S. Ullah, M.A. Khan, S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative. Results in physics 19, 103588 (2020)

    Article  Google Scholar 

  27. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, I. Moroz, Z. Wei, O. Castillo, A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. 87, 105943 (2020)

    Article  Google Scholar 

  28. M.A. Khan, A. Atangana, E. Alzahrani, The dynamics of COVID-19 with quarantined and isolation. Adv. Differ. Equ. 2020(1), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Nawaz, J. Wei, J. Sheng, A.U. Khan, The controllability of damped fractional differential system with impulses and state delay. Adv. Differ. Equ. 2020(1), 1–23 (2020)

    MathSciNet  MATH  Google Scholar 

  30. H. Jahanshahi, D. Chen, Y.M. Chu, J.F. Gómez-Aguilar, A.A. Aly, Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations. Eur. Phys. J. Plus 136(3), 1–22 (2021)

    Article  Google Scholar 

  31. Y.L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y.M. Chu, A.A. Aly, Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Solit. Fract. 146, 110881 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Jahanshahi, J.M. Munoz-Pacheco, S. Bekiros, N.D. Alotaibi, A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19. Chaos Solit. Fract. 143, 110632 (2021)

    Article  MATH  Google Scholar 

  33. M.A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative. Math. Model. Natural Phenom. 14(3), 311 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Jahanshahi, S.S. Sajjadi, S. Bekiros, A.A. Aly, On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller. Chaos Solit. Fract. 144, 110698 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, S. Kacar, V.T. Pham, F.E. Alsaadi, A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383, 125310 (2020)

    MathSciNet  MATH  Google Scholar 

  36. H. Alrabaiah, M.A. Safi, M.H. DarAssi, B. Al-Hdaibat, S. Ullah, M.A. Khan, S.A.A. Shah, Optimal control analysis of hepatitis B virus with treatment and vaccination. Results Phys. 19, 103599 (2020)

    Article  Google Scholar 

  37. H. Jahanshahi, Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision. Eur. Phys. J. Spec. Top. 227(7), 707–718 (2018)

    Article  Google Scholar 

  38. H. Jahanshahi, M. Shahriari-Kahkeshi, R. Alcaraz, X. Wang, V.P. Singh, V.T. Pham, Entropy analysis and neural network-based adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors. Entropy 21(2), 156 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. P.Y. Xiong, H. Jahanshahi, R. Alcaraz, Y.M. Chu, J.F. Gómez-Aguilar, F.E. Alsaadi, Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Solit. Fract. 144, 110576 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Sousa, E.C. de Oliveira, On the local M-derivative. arXiv:1704.08186 (2017)

  41. J. Sousa, E.C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. arXiv:1704.08187 (2017), pp. 1–21

  42. H. Yépez-Martínez, J.F. Gómez-Aguilar, Local M-derivative of order \(\alpha \) and the modified expansion function method applied to the longitudinal wave equation in a magneto electro-elastic circular rod. Opt. Quant. Electron. 50(10), 1–13 (2018)

    Article  Google Scholar 

  43. B. Ghanbari, J.F. Gómez-Aguilar, New exact optical soliton solutions for nonlinear schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Mod. Phys. Lett. B 372, 1–15 (2019)

    Google Scholar 

  44. H. Yépez-Martínez, J.F. Gómez-Aguilar, M-derivative applied to the dispersive optical solitons for the Schrödinger-Hirota equation. Eur. Phys. J. Plus 134(3), 1–13 (2019)

    Article  Google Scholar 

  45. E. Ott, J. Grebogi, C. York, Controlling chaos. Phys. Rev. Lett. 64, 1–11 (1990)

    Article  MathSciNet  Google Scholar 

  46. L. Pecora, G. Carroll, T.L. Johnson, Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 1(7), 520–543 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. C. Wang, S. Ge, Synchronization of two uncertain chaotic systems via adaptive backstepping. Int J. Bifurc. Chaos 11, 1743–1751 (2001)

    Article  Google Scholar 

  48. S. Agrawal, M. Srivastava, S. Das, Synchronization of fractional order chaotic systems using active control method. Chaos Solit. Fract. 1, 1–15 (2012)

    Google Scholar 

  49. Y. Xiaomei, X. Shang, T. Zhao. Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller, in Proceedings of the 32nd Chinese Control Conference, vol. 384 (2013), pp. 1–19

  50. S. Wang, A. Yousefpour, A. Yusuf, H. Jahanshahi, R. Alcaraz, S. He, J.M. Munoz-Pacheco, Synchronization of a non-equilibrium four-dimensional chaotic system using a disturbance-observer-based adaptive terminal sliding mode control method. Entropy 22(3), 271 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. P. Khamsuwan, S. Sangpet, T. Kuntanapreeda, Chaos synchronization of fractional-order chaotic systems with input saturation. J. Comput. Nonlinear Dyn. 1, 1–16 (2018)

    MATH  Google Scholar 

  52. M.K. Shukla, B. Sharma, Backstepping based stabilization and synchronization of a class of fractional order chaotic systems, nonlinear science, and nonequilibrium and complex phenomena. Chaos Solit. Fract. 102(1), 274–284 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Solit. Fract. 28(4), 923–929 (2006)

    Article  ADS  MATH  Google Scholar 

  54. X. Liu, L. Hong, L. Yang, D. Tang, Bifurcations of a new fractional-order system with a one-scroll chaotic attractor. Discret. Dyn. Nat. Soc. 1, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  55. G.A. Gottwald, I. Melbourne, The 0–1 test for chaos: a review. Chaos Detect. Predictability 1, 221–247 (2016)

    Article  Google Scholar 

  56. V. Pham, C. Volos, S. Jafari, S. Vaidyanathan, T. Kapitaniak, X. Wang, A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 26(08), 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. T. Gotthans, J. Petrizela, New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)

    Article  MathSciNet  Google Scholar 

  58. S. Mobayen, S. Vaidyanathan, A. Sambas, S. Kacar, Ü. Cavusoglu, A novel chaotic system with boomerang-shaped equilibrium, its circuit implementation and application to sound encryption. Iran. J. Sci. Technol. Trans. Electr. Eng. 43(1), 1–12 (2019)

    Article  Google Scholar 

  59. L. Yan, C. YangQuan, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Greiner, Lyapunov exponents and chaos, in Classical Mechanics. (Springer, Berlin, 2010), pp. 503–516

  61. S. Zhang, X. Wang, Z. Zeng, A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. Chaos Interdiscipl. J. Nonlinear Sci. 30(5), 053129 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for founding this work through Research Groups program under Grant Number (R.G.P1./278/42).

Funding

King Khalid University Researcher Supporting Project Number (R.G.P1./278/42).

Author information

Authors and Affiliations

Authors

Contributions

JES: conceptualization, methodology, validation, investigation, Writing-original draft preparation, writing-review; JB-V: conceptualization, methodology, validation, writing—original draft preparation, and writing—review; JFG-A: conceptualization, methodology, validation, and writing–review and editing; AAA: validation, formal analysis, and investigation; SA: validation, formal analysis, and investigation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Pérez, J.E., Betancourt-Vera, J., Gómez-Aguilar, J.F. et al. Non-integer order chaotic systems: numerical analysis and their synchronization scheme via M-backstepping technique. Eur. Phys. J. Spec. Top. 231, 1931–1968 (2022). https://doi.org/10.1140/epjs/s11734-022-00468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00468-y

Navigation