Skip to main content
Log in

Theoretical analysis on transmission characteristics of quasi-periodic Fibonacci and Octonacci one-dimensional superconductor–dielectric photonic crystals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this study, we present the theoretical investigations on transmission characteristics of quasi-periodic one-dimensional photonic crystals made by arranging dielectric and superconductor layers in Fibonacci and Octonacci sequences. The temperature-dependent dielectric constant of the superconductor has been calculated using Gorter–Casimir two-fluid model and transfer matrix method (TMM) is adopted for the analysis of propagation of electromagnetic wave through the photonic crystal structure. The transmission properties of the superconductor–dielectric photonic crystal (SDPC) can be tuned, since its response to electromagnetic wave depends on the London penetration depth, which is a function of temperature and magnetic field. The cut-off frequency was found to vary with temperature, angle of incidence, sequence generation number, and thicknesses of dielectric and superconductor layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 20 (1987)

    Article  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 23 (1987)

    Article  Google Scholar 

  3. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Molding the flow of light, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  4. E. Yablonovitch, Sci. Am. 285, 6 (2001)

    Article  Google Scholar 

  5. J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, J.P. De Sandro, Opt. Mater. 11, 2–3 (1999)

    Article  Google Scholar 

  6. H. Shen, Z. Wang, Y. Wu, B. Yang, RSC Adv. 6, 6 (2016)

    Google Scholar 

  7. K. Chen, Q. Fu, S. Ye, J. Ge, Adv. Funct. Mater. 27, 43 (2017)

    Google Scholar 

  8. F. Ghasemi, S.R. Entezar, S. Razi, Phys. Lett. A 383, 21 (2019)

    Article  Google Scholar 

  9. J. Zaghdoudi, M. Kanzari, Optik 160 (2018)

  10. P. Eiamchai, M. Horprathum, V. Patthanasettaku, P. Limnonthakul, N. Nuntawong, P. Limsuwan, P. Chindaudom, Mater. Des. 31, 7 (2010)

    Article  Google Scholar 

  11. B.Y. Soon, J.W. Haus, M. Scalora, C. Sibilia, Opt. Express 11, 17 (2003)

    Article  Google Scholar 

  12. A. Kumar, V. Kumar, A. Nautiyal, K.S. Singh, S.P. Ojha, Optik 145 (2017)

  13. K.V. Sreekanth, S. Zeng, K.T. Yong, T. Yu, Sens. Actuators B Chem. 182 (2013)

  14. H.K. Baghbadorani, J. Barvestani, S.R. Entezar, Appl. Opt. 56, 3 (2017)

    Article  Google Scholar 

  15. A. Bouzidi, D. Bria, F. Falyouni, A. Akjouj, G. Lévêque, M. Azizi, H. Berkhli, JMES 8 (2017)

  16. H. Taniyama, J. Appl. Phys. 91, 6 (2002)

    Article  Google Scholar 

  17. S. Jena, R.B. Tokas, P. Sarkar, J.S. Misal, S.M. Haque, K.D. Rao, N.K. Sahoo, Thin Solid Films 599 (2016)

  18. R.S. Dubey, V. Ganesan, Results Phys. 7 (2017)

  19. J. Yoon, W. Lee, J.M. Caruge, M. Bawendi, E.L. Thomas, S. Kooi, P.N. Prasad, Appl. Phys. Lett. 88, 9 (2006)

    Google Scholar 

  20. K. Busch, S. John, Phys. Rev. Lett. 83, 5 (1999)

    Article  Google Scholar 

  21. C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, J. Zi, Phys. Rev. B 68 (2003)

  22. V. Kumar, B. Suthar, A. Kumar, K.S. Singh, A. Bhargava, Phys. B Condens. Matter 416 (2013)

  23. C.J. Wu, Y.H. Chung, B.J. Syu, T.J. Yang, Prog. Electromagn. Res. 102 (2010)

  24. A. Elsayed, Hussein, Mater. Chem. Phys. 216 (2018)

  25. B. Mamri, O. Barkat, J. Supercond. Nov. Magn. 32, 11 (2019)

    Article  Google Scholar 

  26. Y.K. Ha, Y.C. Yang, J.E. Kim, H.Y. Park, C.S. Kee, H. Lim, J.C. Lee, Appl. Phys. Lett. 79, 1 (2001)

    Google Scholar 

  27. A.H. Aly, W. Sabra, H.A. Elsayed, J. Supercond. Nov. Magn. 26, 3 (2013)

    Article  Google Scholar 

  28. F. Segovia-Chaves, H. Vinck-Posada, Phys. B Condens. Matter 543 (2018)

  29. J.J. Hao, K.D. Gu, L. Xia, Y.J. Liu, Z.F. Yang, H.W. Yang, Commun. Nonlinear Sci. Numer. Simul. 89 (2020)

  30. J.J. Wu, J.X. Gao, Optik 123, 11 (2012)

    Article  Google Scholar 

  31. A.N. Poddubny, E.L. Ivchenko, Phys. E Low Dimensional Syst. Nanostructures 42, 7 (2010)

    Google Scholar 

  32. M.S. Li, A.Y.G. Fuh, S.T. Wu, Opt. Lett. 37, 15 (2012)

    Google Scholar 

  33. L. Dal Negro, S.V. Boriskina, Laser Photonics Rev. 6, 2 (2012)

  34. M. Aissaoui, J. Zaghdoudi, M. Kanzari, B. Rezig, Prog. Electromagn. Res. 59 (2006)

  35. E.R. Brandão, C.H. Costa, M.S. Vasconcelos, D.H.A.L. Anselmo, V.D. Mello, Opt. Mater. 46 (2015)

  36. E.F. Silva, M.S.D. Vasconcelos, C.H. Costa, D.H.A.D.L. Anselmo, V.D. Mello, Opt. Mater. 98 (2019)

  37. K.P. Sreejith, V. Mathew, J. Supercond. Nov. Magn. 31, 7 (2018)

    Article  Google Scholar 

  38. H.A. Gómez-Urrea, J. Escorcia-García, C.A. Duque, M.E. Mora-Ramos, Photonics Nanostructures Fundam. Appl. 27 (2017)

  39. W. Gellermann, M. Kohmoto, B. Sutherland, P.C. Taylor, Phys. Rev. Lett. 72, 5 (1994)

    Article  Google Scholar 

  40. J.J. Wu, J.X. Gao, Optik 123, 11 (2012)

    Article  Google Scholar 

  41. Y. Trabelsi, N.B. Ali, A. Elhawil, R. Krishnamurthy, M. Kanzari, I.S. Amiri, P. Yupapin, Results Phys. 13 (2019)

  42. Y. Trabelsi, N.B. Ali, M. Kanzari, Microelectron. Eng. 213 (2019)

  43. M. Renilkumar, P. Nair, Opt. Mater. 33, 6 (2011)

    Article  Google Scholar 

  44. B. Roumi, R. Abdi-Ghaleh, Opt. Quantum Electron. 53, 11 (2021)

    Article  Google Scholar 

  45. S.K. Srivastava, S.P. Ojha, J. Mod. Opt. 56, 1 (2009)

    Article  Google Scholar 

  46. M. Tinkham, Introduction to superconductivity, 2nd edn. (McGraw-Hill, New York, 2004)

    Google Scholar 

  47. P. Yeh, A. Yariv, C.-S. Hong, J. Opt. Soc. Am. 67 (1977)

  48. A.H. Aly, H.A. Elsayed, Phys. B Condens. Matter 407, 1 (2012)

    Article  Google Scholar 

  49. M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Opt. Mater. 72 (2017)

  50. A.H. Aly, A. Aghajamali, H.A. Elsayed, M. Mobarak, Phys. C Supercond. Appl. 528 (2016)

  51. S. Jena, R.B. Tokas, P. Sarkar, J.S. Misal, S. Maidul Haque, K.D. Rao, S. Thakur, N.K. Sahoo, Thin Solid Films 599 (2016)

  52. S. Valligatla, A. Chiasera, S. Varas, P. Das, B.S. Bhaktha, A. Łukowiak, F. Scotognella, D.N. Rao, R. Ramponi, G.C. Righini, M. Ferrari, Opt. Mater. 50 (2015)

  53. L.E. González, J.E. Ordoñez, C.A. Melo-Luna, E. Mendoza, D. Reyes, G. Zambrano, N. Porras-Montenegro, J.C. Granada, M.E. Gómez, J.H. Reina, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  54. R.G. Florence, S.S. Ang, W.D. Brown, G. Salamo, L.W. Schaper, R.K. Ulrich, J. Appl. Phys. 79, 4 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

KS (Sanctioned File No.09/239(0537)/2018-EMR-I) and SS (Sanctioned File No. 09/239(0533)/2018-EMR-I) acknowledge the Council of Scientific and Industrial Research (CSIR), Government of India for the research funding. Authors also acknowledge the TEQIP III project of MHRD awarded to Cochin University, enabling MATLAB campus licence procurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Priya Rose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, K., Saif, S., Lafeef, E.N.A. et al. Theoretical analysis on transmission characteristics of quasi-periodic Fibonacci and Octonacci one-dimensional superconductor–dielectric photonic crystals. Eur. Phys. J. Spec. Top. 231, 665–671 (2022). https://doi.org/10.1140/epjs/s11734-022-00466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00466-0

Navigation