Skip to main content
Log in

Neural networks that locate and identify birds through their songs

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, we present a set of algorithms that allow the location and identification of birds through their songs. To achieve the first objective, neural networks capable of reconstructing the position of the subject are trained from a set of differences in the arrival times of a sound signal to the different microphones in an array. For the second objective, a dynamical system is used to generate surrogate songs, similar to those of a given set of subjects, to train a neural network so that it can classify subjects. Taken together, they constitute an interesting tool for the automatic monitoring of small bird populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript is available upon request to the corresponding author.]

References

  1. A. Thakur, P. Rajan, IEEE J. Sel. Top. Signal Process. 13(2), 298–309 (2019). https://doi.org/10.1109/JSTSP.2019.2906465

    Article  ADS  Google Scholar 

  2. D. Stowell, M.D. Wood, H. Pamuła, Y. Stylianou, H. Glotin, Methods Ecol. Evol. 10(3), 368–380 (2019). https://doi.org/10.1111/2041-210X.13103

    Article  Google Scholar 

  3. Z.J. Ruff, D.B. Lesmeister, C.L. Appel, C.M. Sullivan, Ecol. Indicators 124, 107419 (2021). https://doi.org/10.1016/j.ecolind.2021.107419

    Article  Google Scholar 

  4. Y. Maegawa, Y. Ushigome, M. Suzuki, K. Taguchi, K. Kobayashi, C. Haga, T. Matsui, Ecol. Inform. 61, 101164 (2021). https://doi.org/10.1016/j.ecoinf.2020.101164

    Article  Google Scholar 

  5. S. Kahl, C.M. Wood, M. Eibl, H. Klinck, Ecol. Inform. 61, 101236 (2021). https://doi.org/10.1016/j.ecoinf.2021.101236

    Article  Google Scholar 

  6. K. Nagy, T. Cinkler, C. Simon, R. Vida, in: 2020 IEEE SENSORS, (2020), pp. 1–4. https://doi.org/10.1109/SENSORS47125.2020.9278714

  7. D. Stowell, T. Petrusková, M. Šálek, P. Linhart, J. Roy. Soc. Interface 16, 153 (2019). https://doi.org/10.1098/rsif.2018.0940

    Article  Google Scholar 

  8. P.L. Tubaro, G.B. Mindlin, Chaos Solitons Fract. X 2, 100012 (2019). https://doi.org/10.1016/j.csfx.2019.100012

    Article  Google Scholar 

  9. G.B. Mindlin, Chaos Interdiscip. J. Nonlinear Sci. 27(9), 092101 (2017). https://doi.org/10.1063/1.4986932

    Article  Google Scholar 

  10. A. Amador, Y.S. Perl, G.B. Mindlin, D. Margoliash, Nature 495(7439), 59–64 (2013). https://doi.org/10.1038/nature11967

    Article  ADS  Google Scholar 

  11. F. Nottebohm, Condor 71(3), 299–315 (1969). https://doi.org/10.2307/1366306

    Article  Google Scholar 

  12. F. Nottebohm, R.K. Selander, Condor 74(2), 137–143 (1972). https://doi.org/10.2307/1366277

    Article  Google Scholar 

  13. C. Kopuchian, D.A. Lijtmaer, P.L. Tubaro, P. Handford, Anim. Behav. 68(3), 551–559 (2004). https://doi.org/10.1016/j.anbehav.2003.10.025

    Article  Google Scholar 

  14. P.L. Tubaro, Ph.D. tesis, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales (1990). http://hdl.handle.net/20.500.12110/tesis_n2382_Tubaro

  15. F. Chollet, Deep Learning with Python (Manning Publications and Co., Shelter Island, New York, 2018). https://www.manning.com/books/deep-learning-with-python

  16. A. Bush, J.F. Döppler, F. Goller, G.B. Mindlin, Proc. Natl. Acad. Sci. USA 115(33), 8436–8441 (2018). https://doi.org/10.1073/pnas.1801251115

    Article  Google Scholar 

  17. F. Goller, R.A. Suthers, J. Neurophysiol. 76(1), 287–300 (1996). https://doi.org/10.1152/jn.1996.76.1.287

    Article  Google Scholar 

  18. R. Laje, T.J. Gardner, G.B. Mindlin, Phys. Rev. E 65(5), 051921 (2002). https://doi.org/10.1103/PhysRevE.65.051921

    Article  ADS  Google Scholar 

  19. Y.S. Perl, E.M. Arneodo, A. Amador, F. Goller, G.B. Mindlin, Phys. Rev. E 84(5), 051909 (2011). https://doi.org/10.1103/PhysRevE.84.051909

    Article  ADS  Google Scholar 

  20. T. Gardner, G. Cecchi, M. Magnasco, R. Laje, G.B. Mindlin, Phys. Rev. Lett. 87(20), 208101 (2001). https://doi.org/10.1103/PhysRevLett.87.208101

    Article  ADS  Google Scholar 

  21. D.T. Blumstein et al., J. Appl. Ecol. 48(3), 758–767 (2011). https://doi.org/10.1111/j.1365-2664.2011.01993.x

    Article  Google Scholar 

  22. K.H. Frommolt, K.H. Tauchert, Ecol. Inform. 21, 4–12 (2014). https://doi.org/10.1016/j.ecoinf.2013.12.009

    Article  Google Scholar 

  23. P.M. Stepanian, K.G. Horton, D.C. Hille, C.E. Wainwright, P.B. Chilson, J.F. Kelly, Ecol. Evol. 6(19), 7039–7046 (2016). https://doi.org/10.1002/ece3.2447

    Article  Google Scholar 

  24. F. Grondin, F. Michaud, Robot. Auton. Syst. 113, 63–80 (2019). https://doi.org/10.1016/j.robot.2019.01.002

    Article  Google Scholar 

  25. S. Sturley, S. Matalonga, in Proceedings of 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (2020), pp. 1–6. https://doi.org/10.1109/IRASET48871.2020.9092006

  26. E. Hansler, G. Schmidt, Speech and Audio Processing in Adverse Environments (Springer, Berlin, 2008). https://link.springer.com/book/10.1007/978-3-540-70602-1

  27. K. Miyazaki, T. Toda, T. Hayashi, K. Takeda, IEEE J. Trans. Elec. Electron. Eng. 14(3), 340–351 (2019). https://doi.org/10.1002/tee.22868

    Article  Google Scholar 

  28. O. Giraudet, J.I. Mars, Appl. Acoust. 67(11–12), 1106–1117 (2006). https://doi.org/10.1016/j.apacoust.2006.05.003

    Article  Google Scholar 

  29. P. Le Bot, H. Glotin, C. Gervaise, Y. Simard, in 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–4 (2015). https://doi.org/10.1109/CAMSAP.2015.7465293

  30. H. Sundar, T.V. Sreenivas, C.S. Seelamantula, IEEE/ACM Trans. Audio Speech Lang. Process. 26(11), 1976–1990 (2018). https://doi.org/10.1109/TASLP.2018.2851147

    Article  Google Scholar 

  31. Video recording of individual of Zonotrichia capensis executing a multiple theme. https://doi.org/10.5281/zenodo.5597225

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel B. Mindlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistel, R.A., Martinez, A. & Mindlin, G.B. Neural networks that locate and identify birds through their songs. Eur. Phys. J. Spec. Top. 231, 185–194 (2022). https://doi.org/10.1140/epjs/s11734-021-00405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00405-5

Navigation