Skip to main content
Log in

Ferroelectric liquid crystals: futuristic mesogens for photonic applications

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Since their discovery in 1888, liquid crystals (LCs) have attracted an unceasing research interest due to their exceptional electro-optical properties that are crucial in the development of displays and modern photonic systems. The vast majority of research works in this domain include the usage of nematic liquid crystals (NLCs) which are repellent for the high-speed optical photonic devices due to their slow electro-optical response. However, in context of electro-optical response time and switch-on voltage, the NLCs still have a huge space to be improved in comparison to other competitive technological solutions. Alternatively, the most promising candidates for development of the next-generation LC-based photonic devices are chiral smectic C (SmC*) LCs, also known as ferroelectric liquid crystals (FLCs) with their microseconds response time and low power consumption. This review comprehensively evinces the recent advancement on the FLC-based photonic devices such as gratings, lenses, spatial light modulators, waveguides, etc. along with the various electro-optical switching modes in these devices. We have also discussed the boon and bane of the FLC materials which is essentially important for their futuristic photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. I. Dierking, Liq. Cryst. Today 24(1), 25 (2015). https://doi.org/10.1080/1358314X.2014.973266

    Article  Google Scholar 

  2. P.J. Collings, M. Hird, Introduction to liquid crystals chemistry and physics: chemistry and physics. London (2017). https://doi.org/10.1201/9781315272801

    Article  Google Scholar 

  3. H. Kitzerow, C. Bahr (eds.), Chirality in Liquid Crystals. Partially Ordered Systems (2001). https://doi.org/10.1007/b97374. https://www.springer.com/gp/book/9780387986791

  4. R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller, Journal de Physique Lettres 36(3), 69 (1975). https://doi.org/10.1051/jphyslet:0197500360306900. http://dx.doi.org/10.1051/jphyslet:0197500360306900

  5. S.K. Gupta, D.P. Singh, R. Manohar, U.S. Hiremath, C. Yelmaggad, Liq. Cryst. 39(9), 1125 (2012). https://doi.org/10.1080/02678292.2012.698754. http://www.tandfonline.com/doi/abs/10.1080/02678292.2012.698754

  6. D.P. Singh, S.K. Gupta, K.K. Pandey, S.P. Yadav, M. Varia, R. Manohar, J. Non-Cryst. Sol. 363, 178 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.12.029. http://linkinghub.elsevier.com/retrieve/pii/S0022309312007442

  7. S.F.S. Fukushima, T.K.T. Kurokawa, Jpn. J. Appl. Phys. 33(10R), 5747 (1994). https://doi.org/10.1143/JJAP.33.5747. https://iopscience.iop.org/article/10.1143/JJAP.33.5747/meta

  8. S. Matsumoto, M. Goto, S.W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, H. Takada, J. Appl. Phys. 99(11), 113709 (2006). https://doi.org/10.1063/1.2202238. https://aip.scitation.org/doi/abs/10.1063/1.2202238

  9. R.K. Komanduri, M.J. Escuti, Appl. Phys. Lett. 95(9), 091106 (2009). https://doi.org/10.1063/1.3197011. https://aip.scitation.org/doi/10.1063/1.3197011

  10. A.K. Srivastava, W. Hu, V.G. Chigrinov, A.D. Kiselev, Y.Q. Lu, Appl. Phys. Lett. 101(3), 031112 (2012). https://doi.org/10.1063/1.4737642. https://aip.scitation.org/doi/10.1063/1.4737642

  11. Y. Ma, J. Sun, A.K. Srivastava, Q. Guo, V.G. Chigrinov, H.S. Kwok, EPL (Euro Phys. Lett.) 102(2), 24005 (2013). https://doi.org/10.1209/0295-5075/102/24005

  12. F. Fan, L. Yao, X. Wang, L. Shi, A.K. Srivastava, V.G. Chigrinov, H.S. Kwok, S. Wen, Crystals 7(3), 79 (2017). https://doi.org/10.3390/cryst7030079. https://www.mdpi.com/2073-4352/7/3/79

  13. S.K. Gupta, Z. Sun, H.S. Kwok, A.K. Srivastava, Liq. Cryst. 47(8), 1162 (2020). https://doi.org/10.1080/02678292.2019.1706109

  14. J. Kim, J.H. Suh, B.Y. Lee, S.U. Kim, S.D. Lee, Opt. Express 23(10), 12619 (2015). https://doi.org/10.1364/OE.23.012619. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-12619

  15. J. Kim, J.H. Na, S.D. Lee, Opt. Express 20(3), 3034 (2012). https://doi.org/10.1364/OE.20.003034. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-3-3034

  16. Z.N. Yuan, Z.B. Sun, H.S. Kwok, A.K. Srivastava, Liq. Cryst. 48(10), 1402 (2021)

  17. Z.B. Sun, Z.n. Yuan, A. Nikita, H.S. Kwok, A.K. Srivastava, Opti. Express 29(9), 13978 (2021). https://doi.org/10.1364/OE.420975. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-29-9-13978

  18. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, Jpn. J. Appl. Phys. 41(11A), L1232 (2002). https://doi.org/10.1143/JJAP.41.L1232. https://iopscience.iop.org/article/10.1143/JJAP.41.L1232/meta

  19. L. Li, D. Bryant, T.v. Heugten, P.J. Bos, Appli. Opt. 52(9), 1978 (2013). https://doi.org/10.1364/AO.52.001978. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-52-9-1978

  20. O. Sova, V. Reshetnyak, T. Galstian, K. Asatryan, JOSA A 32(5), 803 (2015). https://doi.org/10.1364/JOSAA.32.000803. https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-32-5-803

  21. S. Mukherjee, Z.n. Yuan, Z.b. Sun, A.r. Li, C.b. Kang, H.S. Kwok, A.K. Srivastava, Opt. Express 29(6), 8258 (2021). https://doi.org/10.1364/OE.417112. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-29-6-8258

  22. G. Moddel, K.M. Johnson, W. Li, R.A. Rice, L.A. Pagano-Stauffer, M.A. Handschy, Appl. Phys. Lett. 55(6), 537 (1989). https://doi.org/10.1063/1.101847. https://aip.scitation.org/doi/abs/10.1063/1.101847

  23. M. Killinger, J.L.D.B.D.L. Tocnaye, P. Cambon, Ferroelectrics 122(1), 89 (1991). https://doi.org/10.1080/00150199108226031

  24. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, in Intl Symp on Optical Fabrication, Testing, and Surface Evaluation, vol. 1720, ed. by J. Tsujiuchi (SPIE, 1992), vol. 1720, pp. 574 – 580. https://doi.org/10.1117/12.132167

  25. T. Kurokawa, S. Fukushima, Opt. Quant. Electron. 24(10), 1151 (1992). https://doi.org/10.1007/BF00620311

  26. S. Fukushima, T. Kurokawa, M. Ohno, Appl. Opt. 31(32), 6859 (1992). https://doi.org/10.1364/AO.31.006859. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-31-32-6859

  27. S.A. Serati, T.K. Ewing, R.A. Serati, K.M. Johnson, D.M. Simon, in Optical Pattern Recognition IV, vol. 1959 (International Society for Optics and Photonics, 1993), vol. 1959, pp. 55–68. https://doi.org/10.1117/12.160327. https://www.spiedigitallibrary.org/conference-proceedingsof-spie/1959/0000/Programmable-128-x-128-ferroelectricliquid-crystal-spatial-light-modulator/10.1117/12.160327.short

  28. D.J. McKnight, K.M. Johnson, R.A. Serati, Applied Optics 33(14), 2775 (1994). https://doi.org/10.1364/AO.33.002775. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-33-14-2775

  29. R. Buerkle, K.H. Schweikert, E.H. Lueder, S. Breitfelder, F.R. Reichel, in Advances in Optical Information Processing VII, vol. 2754 (International Society for Optics and Photonics, 1996), vol. 2754, pp. 154–165. https://doi.org/10.1117/12.243124. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2754/0000/High-performance-FLC-display-as-a-spatial-light-modulator-for/10.1117/12.243124.short

  30. C.A.T.H. Tee, W.A. Crossland, T.D. Wilkinson, in Photonic Devices and Algorithms for Computing, vol. 3805 (International Society for Optics and Photonics, 1999), vol. 3805, pp. 19–29. https://doi.org/10.1117/12.364001. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3805/0000/Phase-modulation-using-the-silicon-backplane-spatial-light-modulator-and/10.1117/12.364001.short

  31. Y. Isomae, N. Sugawara, N. Iwasaki, T. Honda, K. Amari, in Digital Optical Technologies 2021, vol. 11788 (International Society for Optics and Photonics, 2021), vol. 11788, p. 117880T. https://doi.org/10.1117/12.2595136. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11788/117880T/Phase-only-spatial-light-modulator-having-high-reflectance-high-definition/10.1117/12.2595136.short

  32. A. Kadis, Y. Wang, D. Dong, P. Christopher, R. Mouthaan, T.D. Wilkinson, Appl. Opt. 60(4), A313 (2021). https://doi.org/10.1364/AO.404345. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-60-4-A313

  33. S.P. Kotova, E.P. Pozhidaev, S.A. Samagin, V.V. Kesaev, V.A. Barbashov, S.I. Torgova, Opt. Laser Technol. 135, 106711 (2021). https://doi.org/10.1016/j.optlastec.2020.106711. https://www.sciencedirect.com/science/article/pii/S003039922031344X

  34. K.A. Suresh, Y. Sah, P.B. Sunil Kumar, G.S. Ranganath, Phys. Rev. Lett. 72(18), 2863 (1994). https://doi.org/10.1103/PhysRevLett.72.2863. https://link.aps.org/doi/10.1103/PhysRevLett.72.2863

  35. B. Löfving, S. Hård, Opt. Lett. 23(19), 1541 (1998). https://doi.org/10.1364/OL.23.001541. http://ol.osa.org/abstract.cfm?URI=ol-23-19-1541

  36. D. Engstrom, S. Hard, P. Rudquist, K. D’have, T. Matuszczyk, M. Skeren, B. Lofving, in Wave Optics and Photonic Devices for Optical Information Processing II, vol. 5181, ed. by P. Ambs, F.R.B. Jr, vol. 5181, pp. 132 – 143 (2003). https://doi.org/10.1117/12.502379. Publisher: International Society for Optics and Photonics

  37. D.G. Leyva, B. Robertson, C.J. Henderson, T.D. Wilkinson, D.C. O’Brien, G. Faulkner, in Micro-Optics, VCSELs, and Photonic Interconnects, vol. 5453 (International Society for Optics and Photonics, 2004), vol. 5453, pp. 62–73. https://doi.org/10.1117/12.545893. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5453/0000/Free-space-optical-interconnect-using-an-FLC-SLM-for-active/10.1117/12.545893.short

  38. P. Berthele, E. Gros, B. Fracasso, J.L.d.B.d.l. Tocnaye, Ferroelectrics 214(1), 117 (1998). https://doi.org/10.1080/00150199808012946

  39. W. Crossland, I. Manolis, M. Redmond, K. Tan, T. Wilkinson, H. Chu, J. Croucher, V. Handerek, M. Holmes, T. Parker, I. Bonas, B. Robertson, S. Warr, R. Franklin, C. Stace, H. White, R. Woolley, G. Henshall, in 2000 Digest of the LEOS Summer Topical Meetings. Electronic-Enhanced Optics. Optical Sensing in Semiconductor Manufacturing. Electro-Optics in Space. Broadband Optical Networks (Cat. No.00TH8497), pp. I29–I30 (2000). https://doi.org/10.1109/LEOSST.2000.869685

  40. G. Scalia, D.S. Hermann, G. Abbate, L. Komitov, P. Mormile, G.C. Righini, L. Sirleto, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 320(1), 321 (1998). https://doi.org/10.1080/10587259808024404

  41. N.A. Clark, M.A. Handschy, Appl. Phys. Lett. 57(18), 1852 (1990). https://doi.org/10.1063/1.104037

  42. M. Ozaki, Y. Sadohara, T. Hatai, K. Yoshino, Jpn. J. Appl. Phys. 29(Part 2, No. 5), L843 (1990). https://doi.org/10.1143/jjap.29.l843

  43. D.B. Walker, E.N. Glytsis, T.K. Gaylord, Appl. Opt. 35(16), 3016 (1996). https://doi.org/10.1364/AO.35.003016. http://ao.osa.org/abstract.cfm?URI=ao-35-16-3016

  44. D.S. Hermann, F.D. Marco, G. Scalia, L. Sirleto, G. Righini, M. Lindgren, G. Abbate, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect A. 352(1), 379 (2006). https://doi.org/10.1080/10587250008023196

  45. R. Hoshi, K. Nakatsuhara, T. Nakagami, Electron. Lett. 42, 635 (2006)

    Article  ADS  Google Scholar 

  46. P.S. Russell, J. Lightw. Technol. 24(12), 4729 (2006). https://doi.org/10.1109/JLT.2006.885258

    Article  ADS  Google Scholar 

  47. A. Kato, K. Nakatsuhara, T. Nakagami, in IEEE Photonic Society 24th Annual Meeting, pp. 81–82 (2011). https://doi.org/10.1109/PHO.2011.6110435

  48. X. Hu, O. Hadeler, H.J. Coles, J. Lightw. Technol. 30(7), 938 (2012). http://jlt.osa.org/abstract.cfm?URI=jlt-30-7-938

  49. A. Kato, K. Nakatsuhara, T. Nakagami, in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), pp. 1–2 (2013)

  50. A. Kato, K. Nakatsuhara, T. Nakagami, J. Lightw. Technol. 31(2), 349 (2013). https://doi.org/10.1109/JLT.2012.2228253

    Article  ADS  Google Scholar 

  51. K. Nakatsuhara, A. Kato, Y. Hayama, Opt. Express 22(8), 9597 (2014). https://doi.org/10.1364/OE.22.009597. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-8-9597

  52. S. Ertman, P. Lesiak, T.R. Woliński, J. Lightw. Technol. 35(16), 3399 (2017). https://doi.org/10.1109/JLT.2016.2596540

    Article  ADS  Google Scholar 

  53. P.J.M. Wyatt, J. Bailey, M. Nagaraj, J.C. Jones, SID Symp. Digest Tech. Pap. 50(1), 1806 (2019). https://doi.org/10.1002/sdtp.13308. https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.13308

  54. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, K. Yoshino, Adv. Mater. 15(12), 974 (2003). https://doi.org/10.1002/adma.200304448. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200304448

  55. M. Kasano, M. Ozaki, K. Yoshino, D. Ganzke, W. Haase, Appl. Phys. Lett. 82(23), 4026 (2003). https://doi.org/10.1063/1.1580992. https://aip.scitation.org/doi/abs/10.1063/1.1580992

  56. G.H. Heilmeier, L.A. Zanoni, Appl. Phys. Lett. 13(3), 91 (1968). https://doi.org/10.1063/1.1652529. https://aip.scitation.org/doi/10.1063/1.1652529

  57. D.P. Singh, S.K. Gupta, S.P. Yadav, P.K. Sharma, A.C. Pandey, R. Manohar, Bull. Mater. Sci. 37(3), 511 (2014)

    Article  Google Scholar 

  58. A.K. Srivastava, E.P. Pozhidaev, V.G. Chigrinov, R. Manohar, Appl. Phys. Lett. 99(20), 201106 (2011). https://doi.org/10.1063/1.3661170. https://aip.scitation.org/doi/10.1063/1.3661170

  59. S.K. Gupta, D.P. Singh, R. Manohar, pp. 1264–1265 (2013). https://doi.org/10.1063/1.4810701. http://aip.scitation.org/doi/abs/10.1063/1.4810701

  60. R. Naseri, S. Shoarinejad, Liq. Cryst. 47(12), 1863 (2020). https://doi.org/10.1080/02678292.2020.1750071

  61. H.C. Jau, T.H. Lin, R.X. Fung, S.Y. Huang, J.H. Liu, A.Y.G. Fuh, Opt. Express 18(16), 17498 (2010). https://doi.org/10.1364/OE.18.017498. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-16-17498

  62. S.J. Woltman, J.N. Eakin, G.P. Crawford, S. Žumer, Opt. Lett. 31(22), 3273 (2006). https://doi.org/10.1364/OL.31.003273. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-31-22-3273

  63. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36(11), 899 (1980). https://doi.org/10.1063/1.91359. https://aip.scitation.org/doi/10.1063/1.91359

  64. S.T. Lagerwall, Ferroelectrics 301(1), 15 (2004). https://doi.org/10.1080/00150190490464827

  65. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals. Wiley (2008)

  66. D.K. Yang, S.T. Wu, in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2014), pp. 127–147. https://doi.org/10.1002/9781118751992.ch4

  67. E. Pozhidaev, M. Minchenko, V. Molkin, S. Torgova, V. Chigrinov, A. Srivastava, H. Kwok, V. Vashenko, A. Krivoshey, in 31th International Display Research Conference EuroDisplay (2011)

  68. L. Shi, A. K. Srivastava, A. Cheung, C.T. Hsieh, C.L. Hung, C. H. Lin,C. H. Lin, N. Sugiura, C. W. Kuo, V. G. Chigrinov, H. S. Kwok, J. Soc. Inf. Displays 26(5), 325 (2018). https://doi.org/10.1002/jsid.664

  69. V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, 1999). Google-Books-ID: iWweAQAAIAAJ

  70. J.W. McMurdy, G.P. Crawford, G.D. Jay, Mol. Crys. Liq. Cryst. 476(1), 61/[307] (2007). https://doi.org/10.1080/15421400701681034

  71. F. Fan, A.K. Srivastava, V.G. Chigrinov, H.S. Kwok, Appl. Phys. Lett. 100(11), 111105 (2012). https://doi.org/10.1063/1.3693601. https://aip.scitation.org/doi/10.1063/1.3693601

  72. A.D. Kiselev, E.P. Pozhidaev, V.G. Chigrinov, H.S. Kwok, Phys. Rev. E 83(3), 031703 (2011). https://doi.org/10.1103/PhysRevE.83.031703. https://link.aps.org/doi/10.1103/PhysRevE.83.031703

  73. Y. Ma, X. Wang, A.K. Srivastava, V.G. Chigrinov, H.S. Kwok, AIP Adv. 6(3), 035207 (2016). https://doi.org/10.1063/1.4943900. https://aip.scitation.org/doi/10.1063/1.4943900

  74. S. Sato, Opt. Rev. 6(6), 471 (1999). https://doi.org/10.1007/s10043-999-0471-z

    Article  Google Scholar 

  75. H.S. Chen, Y.H. Lin, A.K. Srivastava, V.G. Chigrinov, C.M. Chang, Y.J. Wang, Opt. Express 22(11), 13138 (2014). https://doi.org/10.1364/OE.22.013138. Publisher: Optical Society of America

  76. A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, P.J. Bos, Interferometry XII: Techniques and Analysis, vol. 5531, ed. by K. Creath, J. Schmit (SPIE, 2004), vol. 5531, pp. 85–94. https://doi.org/10.1117/12.560762

  77. A. Jullien, Photoniques 101, 59 (2020)

  78. T.D. Wilkinson, C.D. Henderson, D.G. Leyva, W.A. Crossland, J. Materi. Chem. 16(33), 3359 (2006). https://doi.org/10.1039/B602296K. https://pubs.rsc.org/en/content/articlelanding/2006/jm/b602296k

  79. S. Turtaev, I.T. Leite, K.J. Mitchell, M.J. Padgett, D.B. Phillips, T. Čižmár, Opt. Express 25(24), 29874 (2017). https://doi.org/10.1364/OE.25.029874. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-24-29874

  80. X. Wang, J.A.J. Fells, W.C. Yip, T. Ali, J.d. Lin, C. Welch, G.H. Mehl, M.J. Booth, T.D. Wilkinson, S.M. Morris, S.J. Elston, Sci. Rep. 9(1), 7016 (2019). https://doi.org/10.1038/s41598-019-42831-5. https://www.nature.com/articles/s41598-019-42831-5

  81. D. Armitage, J.I. Thackara, N.A. Clark, M.A. Handschy, Mol. Cryst. Liq. Cryst. 144(5), 309 (1987). https://doi.org/10.1080/15421408708084224

  82. T. Beard, W. Bleha, S. Wong, Appl. Phys. Lett. 22(3), 90 (1973). https://doi.org/10.1063/1.1654574. https://aip.scitation.org/doi/abs/10.1063/1.1654574

  83. D. Williams, S.G. Latham, C.M.J. Powles, M.A. Powell, R.C. Chittick, A.P. Sparks, N. Collings, J. Phys. D Appl. Phys. 21(10S), S156 (1988). https://doi.org/10.1088/0022-3727/21/10S/045

  84. S. Fukushima, T. Kurokawa, S. Matsuo, H. Kozawaguchi, Optics Letters 15(5), 285 (1990). https://doi.org/10.1364/OL.15.000285. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-15-5-285

  85. S. Fukushima, T. Kurokawa, IEEE Photon. Technol. Lett. 3(7), 682 (1991). https://doi.org/10.1109/68.87953

  86. S. Fukushima, T. Kurokawa, M. Ohno, Applied Physics Letters 58(8), 787 (1991). https://doi.org/10.1063/1.104516. https://aip.scitation.org/doi/10.1063/1.104516

  87. J.L.d.B.d.l. Tocnaye, J.R. Brocklehurst, Appl. Opt. 30(2), 179 (1991). https://doi.org/10.1364/AO.30.000179. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-30-2-179

  88. D. Engström, E. Hällstig, S. Hård, in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), p. DMA5. https://doi.org/10.1364/DOMO.2002.DMA5. http://www.osapublishing.org/abstract.cfm?URI=DOMO-2002-DMA5

  89. D.V. Wick, T. Martinez, M.V. Wood, J.M. Wilkes, M.T. Gruneisen, V.A. Berenberg, M.V. Vasil’ev, A.P. Onokhov, L.A. Beresnev, Appl. Opt. 38(17), 3798 (1999). https://doi.org/10.1364/AO.38.003798. http://ao.osa.org/abstract.cfm?URI=ao-38-17-3798

  90. S.A. Khan, N.A. Riza, Opt. Express 12(5), 868 (2004). https://doi.org/10.1364/OPEX.12.000868. http://www.opticsexpress.org/abstract.cfm?URI=oe-12-5-868

  91. D. Budaszewski, K. Wolińska, B. Jankiewicz, B. Bartosewicz, T.R. Woliński, Crystals 10(9), 785 (2020). https://doi.org/10.3390/cryst10090785. https://www.mdpi.com/2073-4352/10/9/785

  92. D. Budaszewski, A.K. Srivastava, V.G. Chigrinov, T.R. Woliński, Liq. Cryst. 46(2), 272 (2019). https://doi.org/10.1080/02678292.2018.1499149

  93. E. Gros, J.L. De Bougrenet, De La Tsocnaye, R. coquillé, N. Wolffer, Annales Des Télécommunications 56(3), 199 (2001). https://doi.org/10.1007/BF03002702

  94. C.S.I. Wong, J.Y. Liu, K.M. Johnson, Ferroelectrics 181(1–4), 61 (1996). https://doi.org/10.1080/00150193.1996.10399403

  95. D. Budaszewski, A.K. Srivastava, A.M.W. Tam, T.R. Wolinski, V.G. Chigrinov, H.S. Kwok, Opt. Lett. 39(16), 4679 (2014). https://doi.org/10.1364/OL.39.004679. http://ol.osa.org/abstract.cfm?URI=ol-39-16-4679

  96. M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155 (1992). https://doi.org/10.1143/jjap.31.2155

    Article  ADS  Google Scholar 

  97. S. Knust, M. Wahle, H.S. Kitzerow, J. Phys. Chem. B 121(19), 5110 (2017). https://doi.org/10.1021/acs.jpcb.7b00307

    Article  Google Scholar 

  98. S. Mathews, Y. Semenova, G. Farrell, Electron. Lett. 45(12), 617 (2009). https://digital-library.theiet.org/content/journals/10.1049/el.2009.0580

  99. D. Budaszewski, A.K. Srivastava, T.R. Woliński, V.G. Chigrinov, J. Soci. Inform. Display 23(5), 196 (2015). https://doi.org/10.1002/jsid.371. https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/jsid.371

  100. M. Mitov, Adv. Mater. 24(47), 6260 (2012). https://doi.org/10.1002/adma.201202913. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201202913

  101. Y. Inoue, S. Sasaki, H. Moritake, J. Appl. Phys. 127(8), 083104 (2020). https://doi.org/10.1063/1.5136048. https://aip.scitation.org/doi/full/10.1063/1.5136048

Download references

Acknowledgements

DPS sincerely thanks to Prof. A. Hadj Sahraoui, the Director of UDSMM, for his continuous encouragement and support. DB sincerely acknowledges the funds by CB POB FOTECH of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Budaszewski, D. & Singh, D.P. Ferroelectric liquid crystals: futuristic mesogens for photonic applications. Eur. Phys. J. Spec. Top. 231, 673–694 (2022). https://doi.org/10.1140/epjs/s11734-021-00390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00390-9

Navigation