Skip to main content
Log in

The effect of CTAB and lactic acid as surfactants in ZnS quantum dots: a simple method for colloidal synthesis and characterization

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper consists of detailed explanation on a very simple yet effective way of synthesis of fluorescent ZnS quantum dots. We have obtained this, employing colloidal coprecipitation method for synthesis. The effect of two different capping agents on the size, structure, and photonic properties has been studied. For this study, we have used Cetyl Trimethyl Ammonium Bromide (CTAB), a long-chain surfactant with anti-bacterial and anti-viral properties as a capping agent. This work is continuation of our own work recently published, which deals with the comparison of very similar quantum dots capped by lactic acid, a simple carboxylic acid with biocompatibility. To study the effects of two different capping agents, the samples have undergone various characterization techniques such as XRD, HR-TEM, FTIR, UV–Vis absorption, and photoluminescence. The size distribution histogram, SAED pattern, and Tauc plot have been analyzed as additional characterization methods. The final results suggest that these two capping agents do not affect the crystal structure and any intrinsic material parameters. However, we have observed slight variation in average size and optical bandgaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Taniguchi, in On the Basic Concept of Nanotechnology. Proceedings of the International Conference on Production Engineering, Tokyo, 1974, pp. 18–23

  2. K.E. Drexler, Engines of Creation (Anchor Books, New York, 1986)

    Google Scholar 

  3. A. Henglein, Small-particle research-physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)

    Article  Google Scholar 

  4. A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  Google Scholar 

  5. R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79(2), 1086–1088 (1983)

    Article  ADS  Google Scholar 

  6. K.W.J. Barnham, G. Duggan, A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67(7), 3490 (1990)

    Article  ADS  Google Scholar 

  7. D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe, 1.3 \(\mu \)m room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 73(18), 2564–2566 (1998)

    Article  Google Scholar 

  8. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011)

    Article  ADS  Google Scholar 

  9. Daniel Loss, David P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A. 57(1), 120–126 (1998)

    Article  ADS  Google Scholar 

  10. H.Y. Ramírez, J. Flórez, A.S. Camacho, Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles. Phys. Chem. Chem. Phys. 17(37), 23938–46 (2015)

    Article  Google Scholar 

  11. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–44 (2005)

    Article  ADS  Google Scholar 

  12. Pavel Zrazhevskiy, Mark Sena, Xiaohu Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39(11), 4326–4354 (2010)

    Article  Google Scholar 

  13. Manoj Nirmal, Louis Brus, Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32(5), 407–414 (1999)

    Article  Google Scholar 

  14. Pu. Yuan, Fuhong Cai, Dan Wang, Jie-Xin. Wang, Jian-Feng. Chen, Colloidal synthesis of semiconductor quantum dots toward largescale production: a review. Ind. Eng. Chem. Res. 57, 1790–1802 (2018)

    Article  Google Scholar 

  15. Yadong Li, Yi. Ding, Yue Zhang, Yitai Qian, Photophysical properties of ZnS quantum dots. J. Phys. Chem. Solids 60–1, 13–15 (1999)

    Article  Google Scholar 

  16. S. Mahamuni, A.A. Khosravi, M. Kundu, A. Kshirsagar, Thiophenol-capped ZnS quantum dots. J. Appl. Phys. 73, 5237 (1993)

    Article  ADS  Google Scholar 

  17. Hui Li et al., Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis. Nanotechnology 18, 205604 (2007)

    Article  ADS  Google Scholar 

  18. H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, T.B. Chaabane, Insight of ZnS nanoparticles contribution in different biological uses. Asian Pac. J. Trop. Med. 9(8), 757–762 (2016)

    Article  Google Scholar 

  19. T.S. Tilakraj, M.K. Patil, V.S. Bhat, V. Pujari, S.R. Inamdar, in Simple one pot synthesis and characterization of biocompatible Lactic acid capped fluorescent ZnS QDs. Materials Today: Proceedings, 2021, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.04.455

  20. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871 (2018)

    Article  Google Scholar 

  21. I. Medintz, A. Clapp, H. Mattoussi et al., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630–638 (2003)

    Article  ADS  Google Scholar 

  22. W.K. David, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44(14), 4792–4834 (2015)

    Article  Google Scholar 

  23. F.A. La Porta, J. Andre’s, M.S. Li, J.R. Sambrano, J.A. Varela, E. Longoa, Phys. Chem. Chem. Phys. 16, 20127 (2014). https://doi.org/10.1039/c4cp02611j

  24. P. Scherrer, G. Nachrichten, Math. Phys. 2, 98–100 (1918)

  25. S. Wageh, Z.S. Ling, X. Xu-Rong, Growth and optical properties of colloidal ZnS nanoparticles. J. Cryst. Growth 255, 332–337 (2003)

    Article  ADS  Google Scholar 

  26. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bullet. 3(1), 37–46 (1968)

  27. B. Poornaprakash, U. Chalapathi, M. Kumar, S.V. Prabhakar Vattikuti, B. Rajitha, P.T. Poojitha, S.-H. Park, Mater. Sci. Semicond. Process. 121, 105395 (2021)

  28. A.S. Messalti, M. El-Ghozzi, D. Zambon, R. Mahiou, Z. Setifi, Investigating photoluminescence properties of Ca-doped ZnS nanoparticles prepared via hydrothermal method. J. Lumin. 238, 118227 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank University Grants Commission (UGC) for financial support under CPEPA. TST would like to thank UGC for NET-JRF fellowship (Sr no. 2061651259 dt: 26/10/2017). MKP would like to thank KSTePs, Govt. of Karnataka for providing DST-Ph.D. fellowship. The authors thank the University Scientific Instrumentation Centre, Sophisticated Analysis Instrumentation Facility (SAIF) Karnatak University, Dharwad and SAIF (STIC) Cochin, Kerala for providing instrumentation facility.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilakraj, T.S., Patil, M.K., Bhat, V.S. et al. The effect of CTAB and lactic acid as surfactants in ZnS quantum dots: a simple method for colloidal synthesis and characterization. Eur. Phys. J. Spec. Top. 231, 651–658 (2022). https://doi.org/10.1140/epjs/s11734-021-00387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00387-4

Navigation