Skip to main content
Log in

An effective equation for quasi-one-dimensional funnel-shaped Bose–Einstein condensates with embedded vorticity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

On the basis of a recently introduced model for the Bose–Einstein condensate (BEC) trapped in the 2D “funnel” potential, \(\sim \) \(-r^{-1}\), we develop analysis for vortex modes, which are confined in the transverse direction by the self-attraction, or by the trapping potential, in the case of self-repulsion. Linear 3D wave functions are found exactly for eigenstates with an orbital momentum. In the case of self-repulsion, 3D wave functions are obtained by means of the Thomas–Fermi approximation. Then, with the help of the variational method, the underlying Gross–Pitaevskii equation is reduced to a 1D nonpolynomial Schrödinger equation (NPSE) for modes with zero or nonzero embedded vorticity, which are tightly confined by the funnel potential in the transverse plane. Numerical results demonstrate high accuracy of the NPSE reduction for both signs of the nonlinearity. The analysis is performed for stationary modes and for traveling ones colliding with a potential barrier. By means of simulations of NPSE with the self-attraction, collisions between solitons are studied too, demonstrating elastic and inelastic outcomes, depending on the impact velocity and underlying vorticity. A boundary of the stability of 3D vortices with winding number \(S=1\) against spontaneous splitting in two fragments is identified in the case of the self-attraction, all vortices with \(S\ge 2\) being unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No associate data is deposited, as it is not necessary for the presentation of the results in the paper.].

References

  1. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  2. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, International Series of Monographs on Physics (Clarendon Press, 2003)

  3. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  4. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  5. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  6. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  7. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  8. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)

    Article  ADS  Google Scholar 

  9. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

    Article  ADS  Google Scholar 

  10. S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)

    Article  ADS  Google Scholar 

  11. J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmer- son, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips, Science 287, 97 (2000)

  12. P. Meystre, Atom Optics (Springer, 2001)

  13. A.D. Martin, J. Ruostekoski, New J. Phys. 14, 043040 (2012)

    Article  ADS  Google Scholar 

  14. G.D. McDonald, C.C.N. Kuhn, K.S. Hardman, S. Bennetts, P.J. Everitt, P.A. Altin, J.E. Debs, J.D. Close, N.P. Robins, Phys. Rev. Lett. 113, 013002 (2014)

    Article  ADS  Google Scholar 

  15. J.L. Helm, S.L. Cornish, S.A. Gardiner, Phys. Rev. Lett. 114, 134101 (2015)

    Article  ADS  Google Scholar 

  16. A. Di Carli, C.D. Colquhoun, G. Henderson, S. Flannigan, G.L. Oppo, A.J. Daley, S. Kuhr, E. Haller, Phys. Rev. Lett. 123, 123602 (2019)

    Article  ADS  Google Scholar 

  17. D. Luo, Y. Jin, J.H.V. Nguyen, B.A. Malomed, O.V. Marchukov, V.A. Yurovsky, V. Dunjko, M. Olshanii, R.G. Hulet, Phys. Rev. Lett. 125, 183902 (2020)

    Article  ADS  Google Scholar 

  18. D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015)

    Article  ADS  Google Scholar 

  19. D.S. Petrov, G.E. Astrakharchik, Phys. Rev. Lett. 117, 100401 (2016)

    Article  ADS  Google Scholar 

  20. C. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, L. Tarruell, Science 359, 301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Cheiney, C.R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, L. Tarruell, Phys. Rev. Lett. 120, 135301 (2018)

    Article  ADS  Google Scholar 

  22. G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, M. Fattori, Phys. Rev. Lett. 120, 235301 (2018)

    Article  ADS  Google Scholar 

  23. C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, C. Fort, Phys. Rev. Res. 1, 033155 (2019)

    Article  Google Scholar 

  24. Z.-H. Luo, W. Pang, B. Liu, Y.-Y. Li, B.A. Malomed, Front. Phys. 16, 1 (2021)

    Google Scholar 

  25. F. Büttcher, J.-N. Schmidt, J. Hertkorn, K.S.H. Ng, S.D. Graham, M. Guo, T. Langen, T. Pfau, Rep. Prog. Phys. 84, 012403 (2021)

    Article  ADS  Google Scholar 

  26. A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 2417 (1998)

    Article  ADS  Google Scholar 

  27. M. Chiofalo, M. Tosi, Phys. Lett. A 268, 406 (2000)

    Article  ADS  Google Scholar 

  28. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002)

    Article  ADS  Google Scholar 

  29. P. Massignan, M. Modugno, Phys. Rev. A 67, 023614 (2003)

    Article  ADS  Google Scholar 

  30. A.M. Kamchatnov, V.S. Shchesnovich, Phys. Rev. A 70, 023604 (2004)

    Article  ADS  Google Scholar 

  31. W. Zhang, L. You, Phys. Rev. A 71, 025603 (2005)

    Article  ADS  Google Scholar 

  32. A. Maluckov, L. Hadzievski, B.A. Malomed, L. Salasnich, Phys. Rev. A 78, 013616 (2008)

    Article  ADS  Google Scholar 

  33. S.K. Adhikari, L. Salasnich, Phys. Rev. A 77, 033618 (2008)

    Article  ADS  Google Scholar 

  34. L. Salasnich, F. Toigo, Phys. Rev. A 78, 053626 (2008)

    Article  ADS  Google Scholar 

  35. S. Adhikari, Laser Phys. Lett. 6, 901 (2009)

    Article  ADS  Google Scholar 

  36. S.K. Adhikari, B.A. Malomed, Physica D 238, 1402 (2009)

    Article  ADS  Google Scholar 

  37. S.K. Adhikari, J. Phys. B At. Mol. Opt. Phys. 43, 085304 (2010)

    Article  ADS  Google Scholar 

  38. M. C. P. dos Santos and W, B. Cardoso, Phys. Rev. E 103, 052210 (2021)

  39. A. Muñoz Mateo and V. Delgado, Phys. Rev. A 77, 013617 (2008)

  40. G. Gligorić, A. Maluckov, L. Hadzievski, B.A. Malomed, J. Phys. B At. Mol. Opt. Phys. 42, 145302 (2009)

    Article  ADS  Google Scholar 

  41. G. Gligorić, A. Maluckov, L. Hadzievski, B.A. Malomed, Phys. Rev. A 79, 053609 (2009)

    Article  ADS  Google Scholar 

  42. L. Salasnich, B.A. Malomed, Phys. Rev. A 79, 053620 (2009)

    Article  ADS  Google Scholar 

  43. L. Salasnich, J. Phys. A Math. Theor. 42, 335205 (2009)

    Article  MathSciNet  Google Scholar 

  44. Luis E. Young-S., L. Salasnich, and S. K. Adhikari, Phys. Rev. A 82, 053601 (2010)

  45. W.B. Cardoso, A.T. Avelar, D. Bazeia, Phys. Rev. E 83, 036604 (2011)

    Article  ADS  Google Scholar 

  46. L. Salasnich, B.A. Malomed, J. Phys. B At. Mol. Opt. Phys. 45, 055302 (2012)

    Article  ADS  Google Scholar 

  47. L. Salasnich and B. A. Malomed, Phys. Rev. A - At. Mol. Opt. Phys. 87, 063625 (2013)

  48. L. Salasnich, W.B. Cardoso, B.A. Malomed, Phys. Rev. A 90, 033629 (2014)

    Article  ADS  Google Scholar 

  49. M.C. dos Santos, W.B. Cardoso, Phys. Lett. A 383, 1435 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. C. Wang, P. Kevrekidis, T. Horikis, D. Frantzeskakis, Phys. Lett. A 374, 3863 (2010)

    Article  ADS  Google Scholar 

  51. A.I. Nicolin, M.C. Raportaru, Phys. A Stat. Mech. its Appl. 389, 4663 (2010)

    Article  ADS  Google Scholar 

  52. C.A.G. Buitrago, S.K. Adhikari, J. Phys. B At. Mol. Opt. Phys. 42, 215306 (2009)

    Article  ADS  Google Scholar 

  53. H.L.C. Couto, W.B. Cardoso, J. Phys. B At. Mol. Opt. Phys. 48, 025301 (2015)

    Article  ADS  Google Scholar 

  54. S. Middelkamp, G. Theocharis, P.G. Kevrekidis, D.J. Frantzeskakis, P. Schmelcher, Phys. Rev. A 81, 053618 (2010)

    Article  ADS  Google Scholar 

  55. G. Theocharis, A. Weller, J.P. Ronzheimer, C. Gross, M.K. Oberthaler, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. A 81, 063604 (2010)

    Article  ADS  Google Scholar 

  56. A.M. Mateo, V. Delgado, B.A. Malomed, Phys. Rev. A 83, 053610 (2011)

    Article  ADS  Google Scholar 

  57. W.B. Cardoso, J. Zeng, A.T. Avelar, D. Bazeia, B.A. Malomed, Phys. Rev. E 88, 025201 (2013)

    Article  ADS  Google Scholar 

  58. A.M. Mateo, V. Delgado, Phys. Rev. E 88, 042916 (2013)

  59. T. Yang, A.J. Henning, K.A. Benedict, J. Phys. B At. Mol. Opt. Phys. 47, 035302 (2014)

    Article  ADS  Google Scholar 

  60. H.L.C. Couto, A.T. Avelar, W.B. Cardoso, Ann. Phys. 530, 1700352 (2018)

    Article  MathSciNet  Google Scholar 

  61. M.C.P. dos Santos, B.A. Malomed, W.B. Cardoso, J. Phys. B At. Mol. Opt. Phys. 52, 245301 (2019)

    Article  ADS  Google Scholar 

  62. B. Mottelson, Phys. Rev. Lett. 83, 2695 (1999)

    Article  ADS  Google Scholar 

  63. G.F. Bertsch, T. Papenbrock, Phys. Rev. Lett. 83, 5412 (1999)

    Article  ADS  Google Scholar 

  64. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  65. B.A. Malomed, Physica D 399, 108 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  66. P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180, 1888 (2009)

    Article  ADS  Google Scholar 

  67. J.H. Nguyen, P. Dyke, D. Luo, B.A. Malomed, R.G. Hulet, Nature Physics 10, 918 (2014)

    Article  ADS  Google Scholar 

  68. Y.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989)

    Article  ADS  Google Scholar 

  69. S. Gatz, J. Herrmann, J. Opt. Soc. Am. B 8, 2296 (1991)

    Article  ADS  Google Scholar 

  70. L. Khaykovich, B.A. Malomed, Phys. Rev. A 74, 023607 (2006)

    Article  ADS  Google Scholar 

  71. M.C.P. dos Santos, B.A. Malomed, W.B. Cardoso, Phys. Rev. E 102, 042209 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  72. D. Mihalache, D. Mazilu, B.A. Malomed, F. Lederer, Phys. Rev. A 73, 043615 (2006)

    Article  ADS  Google Scholar 

  73. T.J. Alexander, L. Bergé, Phys. Rev. E 65, 026611 (2002)

    Article  ADS  Google Scholar 

  74. H. Saito, M. Ueda, Phys. Rev. Lett. 89, 190402 (2002)

    Article  ADS  Google Scholar 

  75. E. Shamriz, Z. Chen, B. A. Malomed, and H. Sakaguchi, Singular mean-field states: a brief review of recent results. Condensed Matter 5, 20 (2020)

Download references

Acknowledgements

The authors acknowledge financial support from the Brazilian agencies CNPq (#304073/2016-4 & #425718/2018-2), CAPES, and FAPEG (PRONEM #201710267000540 & PRONEX #201710267000503). This work was performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information (#465469/2014-0). The work B.A.M. is supported, in part, by the Israel Science Foundation through Grant No. 1286/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley B. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.C.P.d., Cardoso, W.B. & Malomed, B.A. An effective equation for quasi-one-dimensional funnel-shaped Bose–Einstein condensates with embedded vorticity. Eur. Phys. J. Spec. Top. 231, 283–295 (2022). https://doi.org/10.1140/epjs/s11734-021-00351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00351-2

Navigation