Skip to main content
Log in

Hidden dynamics of an optically injected laser diode subject to threshold electromagnetic induction: coexistence of multiple stable states

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this contribution, we perform a detailed study of the effect of electromagnetic induction on the dynamical behavior of laser diode modeled by novel single-mode four-dimensional rate equations. Memristor is used to describe electromagnetic induction effect. As result, the obtained model is equilibrium free thus displays hidden dynamics. Consequently, Shilnikov method is not suitable to explain the chaos mechanism in the introduced laser model. Furthermore, there is no heteroclinic nor homoclinic orbit. Based on numerical simulations, we found that the laser model displays hidden dynamics including period doubling bifurcation, multistability (with three different stable states) and crisis phenomena when the electromagnetic strength is varied. The circuit emulator of laser model investigated in this paper has been designed in the Pspice environment to further support numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

My manuscript has no associated data or the data will not be deposited.

References

  1. J.O. Akanni, F.O. Akinpelu, S. Olaniyi, A.T. Oladipo, A.W. Ogunsola, Int. J. Dyn. Control 8, 531–544 (2020)

    Article  MathSciNet  Google Scholar 

  2. B. Bao, H. Qian, J. Wang, Q. Xu, M. Chen, H. Wu, Y. Yu, Nonlinear Dyn. 90(4), 2359–2369 (2017)

    Article  Google Scholar 

  3. Z.T. Njitacke, J. Kengne, H.B. Fotsin, Int. J. Dyn. Control 7, 36–52 (2019)

    Article  MathSciNet  Google Scholar 

  4. Z.T. Njitacke, J. Kengne, AEU Int. J. Electron. Commun. 93, 242–252 (2018)

    Article  Google Scholar 

  5. H. Bao, A. Hu, W. Liu, B. Bao, IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2019)

  6. C.N. Takembo, A. Mvogo, H.P. Ekobena Fouda, T.C. Kofané, Nonlinear Dyn. 95, 1079–1098 (2018)

  7. E.M. Izhikevich, IEEE Trans. Neuron Netw. 15, 1063–70 (2004)

    Article  Google Scholar 

  8. A. Dutta, P.K. Gupta, Chin. J. Phys. 56(3), 1045–1056 (2018)

    Article  Google Scholar 

  9. R.C. Ignacio, A.J. Mark, Chaplain, R.A. Alexander, Math. Comp. Model. 47, 533–545 (2008)

  10. Awad El-Gohary, Chaos Solitons Fractals 37, 1305–1316 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Horton, R.S. Weigel, J.C. Sprott, Phys. Plasma 8(6), 2946–2952 (2001)

  12. W. Horton, I. Doxas, J. Geophys. Res. 103, 4561–4572 (1998)

    Article  ADS  Google Scholar 

  13. J.P. Smith, J.L. Thiffeault, W. Horton, J. Geophys. Res. 105(A6), 983–12996 (2000) (12)

  14. Ayub Khan Sanjay Kum, Int. J. Dyn. Control 7, 536–546 (2019)

    Article  MathSciNet  Google Scholar 

  15. G. Cai, P. Hu, Y. Li, Nonlinear Dyn. 69, 1457–1464 (2012)

    Article  Google Scholar 

  16. B. Xin, J. Zhang, Nonlinear Dyn. 79, 1399–1409 (2015)

    Article  Google Scholar 

  17. A.M. Josue, Borghans, G. DuPont, A. Goldbeter, Biophys. Chem. 66, 25–41 (1997)

  18. S. Wieczorek, B. Krauskopf, D. Lenstra, Opt. Commun. 172, 279–295 (1999)

    Article  ADS  Google Scholar 

  19. S. Wieczorek, T.B. Simpso, B. Krauskopf, D. Lenstra, Opt. Commun. 215, 125–134 (2003)

    Article  ADS  Google Scholar 

  20. S. Wieczorek, B. Krauskopf, D. Lenstra, Opt. Commun. 183, 215–226 (2000)

    Article  ADS  Google Scholar 

  21. A. Gavrielides, V. Kovanis, P.M. Varangis, T. Erneux, G. Lythe, Quant. Semiclass Opt. 9, 785–796 (1997)

    Article  ADS  Google Scholar 

  22. J. Ohtsubo, Springer Series in Optical Sciences, 3rd edn (Springer, Berlin, 2013)

  23. S. Kobayashi, T. Kimura, IEEE J. Quant. Electron. 16, 915 (1980)

    Article  ADS  Google Scholar 

  24. F. Mogensen, H. Olesen, G. Jacobsen, I.E.E.E.J. Quan, Electronics 21(7), 784–793 (1985)

    Google Scholar 

  25. G. Coureau, Ph.D. Thesis, University of Bordeaux 2 (2013)

  26. K.E. Chlouverakis, M.J. Adams, Opt. Commun. 216, 405–412 (2003)

    Article  ADS  Google Scholar 

  27. V.T. Pham, C. Volos, S. Jafari, T. Kapitaniak, Nonlinear Dyn. 87(3), 2001–2010 (2017)

    Article  Google Scholar 

  28. V.T. Pham, S. Jafari, C. Volos, L. Fortuna, Choas Solitons Fractals 120, 213–221 (2019)

    Article  ADS  Google Scholar 

  29. V.T. Pham, C. Volos, T. Kapitaniak, S. Jafari, X. Wang, Int. J. Electron. 105(3), 385–390 (2018)

    Google Scholar 

  30. A. Wolf, J.B. Swift, J.A. Swinney, Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  ADS  Google Scholar 

  31. X. Jiang, X. Chen, T. Huang, H. Yan, IEEE Trans. Circuits Syst. 68(1), 376–380 (2020)

  32. X. Jiang, X. Zhan, Z. Guan, X. Zhang, L. Yu, J. Frankl. Inst. 352(1), 1–15 (2015)

    Article  Google Scholar 

  33. X. Jiang, X. Chen, M. Chi, J. Chen, Appl. Math. Comp. 370, 10 (2020)

  34. R. Lang, IEEE J. Quant. Electron. 18, 976 (1982)

    Article  ADS  Google Scholar 

  35. Z.T. Njitacke, R.L. Tagne Mogue, J. Kengne, M. Kountchou, H.B. Fotsin, Iran. J. Sci. Technol. Trans. Electron. Eng. 44, 413–429 (2019)

  36. J.M. Cushing, S.M. Henson, Blackburn, J. Biol. Dyn. 1, 347–362 (2007)

  37. R.K. Upadhyay, Chaos Solitons Fractals 16, 737–747 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Massoudi, M.G. Hjani, M. Afarian, J. Electron. Anal. Chem. 647, 74–86 (2010)

    Google Scholar 

  39. J. Wang, H. Sun, S.K. Scott, S. Showalter, Phys. Chem. 5, 5444–5447 (2003)

    Google Scholar 

  40. C.N. Ngonghala, U. Feudel, K. Showalter, Phys. Rev. E 83, 5 (2011)

    Article  Google Scholar 

  41. T. Tchinda, Z. Njitacke, T.F. Fonzin, H. Fotsin. Sci. J. Circuit Syst. Signal Process. 8(2), 66–75 (2019)

  42. M. Torre, C. Masoller, Photonics 6(2), 7 (2019)

  43. L. Li, I.E.E.E.J. Quan, Electronics 30, 8 (1994)

    Google Scholar 

  44. C. Li, F. Min, Q. Jin, H. Ma, AIP Adv. 7, 12 (2017)

    Google Scholar 

  45. R.L. Mogue Tagne, J. Kengne, A. Nguomkam Negou, Int. J. Dyn. Control 7, 476–495 (2018)

  46. B.A. Mezatio, M.T. Motchongom, R.T. Tekam, R. Kengne, R. Tchitnga, A. Fomethe, Chaos Solitons Fractals 120, 100–115 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

THT and ZTN have designed the project. TFF and HBF have realized some numerical simulations. THT has written the project. THT, ZTN, TFF and HBF have read and validated the project.

Corresponding author

Correspondence to T. H. Tchinda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchinda, T.H., Njitacke, Z.T., Fonzin, T.F. et al. Hidden dynamics of an optically injected laser diode subject to threshold electromagnetic induction: coexistence of multiple stable states. Eur. Phys. J. Spec. Top. 230, 1979–1988 (2021). https://doi.org/10.1140/epjs/s11734-021-00134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00134-9

Navigation