Skip to main content
Log in

ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This work deals with natural convection flow resulting from rotating circular cylinders in a horizontal wavy cavity fully filled by nanofluid. The horizontal wavy cavity was saturated by three layers of heterogeneous porous media. Incompressible smoothed particle hydrodynamics (ISPH) method is used to solve the non-dimensional governing equations of the current physical problem. Three circular cylinders are carrying a hot temperature with a uniform circular velocity inside a horizontal wavy cavity. Effects of physical parameters including circular cylinder radius \((0.05\le R_{\text {c}}\le 0.3)\), Darcy parameter \(({10}^{-3}\le {\text {Da}}\le {10}^{-5})\), Rayleigh number \(({10}^{3}\le {\text {Ra}}\le {10}^{5})\), nanoparticles volume fraction \((0\le \phi \le 6\% )\), and paddle lengths \((0.05\le L_{\text {paddl}}\le 0.2)\) on fluid flow and heat transfer were examined. Results revealed that an increase on radius of inner cylinders rises temperature distributions and nanofluid flow. A decrease on Darcy parameter weakens fluid flow. A growth on paddle lengths enhances velocity field in all the porous layers. In the current simulations, ISPH method showed a well performance in simulating natural convection flow of nanofluid inside a novel geometry (horizontal wavy cavity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.K. Kareem, S. Gao, A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. Int. Commun. Heat Mass Transfer 90, 44–55 (2018)

    Article  Google Scholar 

  2. A.K. Kareem, S. Gao, Mixed convection heat transfer of turbulent flow in a three-dimensional lid-driven cavity with a rotating cylinder. Int. J. Heat Mass Transf. 112, 185–200 (2017)

    Article  Google Scholar 

  3. T. Wang, Z. Huang, G. Xi, Entropy generation for mixed convection in a square cavity containing a rotating circular cylinder using a local radial basis function method. Int. J. Heat Mass Transf. 106, 1063–1073 (2017)

    Article  Google Scholar 

  4. K. Khanafer, S. Aithal, Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder. Int. Commun. Heat Mass Transfer 86, 131–142 (2017)

    Article  Google Scholar 

  5. F. Selimefendigil, H.F. Öztop, Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat Mass Transf. 117, 331–343 (2018)

    Article  Google Scholar 

  6. Y.M. Seo, M.Y. Ha, Y.G. Park, A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part I: Size effect of a circular cylinder or an elliptical cylinder, International Journal of Heat and Mass Transfer 134, 420–436 (2019)

    Google Scholar 

  7. Y.M. Seo, M.Y. Ha, Y.G. Park, A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part II: Inclination angle effect of the elliptical cylinder, International Journal of Heat and Mass Transfer 131, 795–806 (2019)

    Google Scholar 

  8. R. Hassanzadeh, R. Rahimi, A. Khosravipour, S. Mostafavi, H. Pekel, Analysis of natural convection in a square cavity in the presence of a rotating cylinder with a specific number of roughness components. International Communications in Heat and Mass Transfer 116 (2020)

  9. R. Nasrin, Influences of Physical Parameters on Mixed Convection in a Horizontal Lid-Driven Cavity with an Undulating Base Surface. Numerical Heat Transfer, Part A: Applications 61(4), 306–321 (2012)

    Article  ADS  Google Scholar 

  10. A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Numerical investigation of mixed convection and entropy generation in a wavy-walled cavity filled with nanofluid and involving a rotating cylinder. Entropy 20(9), 664 (2018)

    Article  ADS  Google Scholar 

  11. A.I. Alsabery, R. Mohebbi, A.J. Chamkha, I. Hashim, Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)

    Article  Google Scholar 

  12. M. Sheikholeslami, Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018)

    Article  Google Scholar 

  13. M. Sheikholeslami, Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.M. Seo, K. Luo, M.Y. Ha, Y.G. Park, Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. International Journal of Heat and Mass Transfer 152 (2020)

  15. H.T. Kadhim, F.A. Jabbar, A. Rona, Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. International Journal of Mechanical Sciences 186 (2020)

  16. R.W. Lewis, P. Nithiarasu, K.N. Seetharamu, Fundamentals of the finite element method for heat and fluid flow (John Wiley & Sons, 2004)

  17. R.W. Lewis, B.A. Shrefler, The finite element method in the static and dynamic deformation and consolidation of porous media (Wiley, Chichester, England, 1998)

    Google Scholar 

  18. P. Nithiarasu, R.W. Lewis, K.N. Seetharamu, Fundamentals of the finite element method for heat and mass transfer (John Wiley & Sons, 2016)

  19. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  ADS  Google Scholar 

  20. S.J. Cummins, M. Rudman, An SPH Projection Method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Xu, P. Stansby, D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228(9), 6703–6725 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Asai, A.M. Aly, Y. Sonoda, Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition. Journal of Applied Mathematics 2012 (2012)

  23. A. Khayyer, H. Gotoh, H. Falahaty, Y. Shimizu, An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139–164 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.A. Dalrymple, B. Rogers, Numerical modeling of water waves with the SPH method. Coast. Eng. 53(2–3), 141–147 (2006)

    Article  Google Scholar 

  25. M. Ferrand, D.R. Laurence, B.D. Rogers, D. Violeau, C. Kassiotis, Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Meth. Fluids 71(4), 446–472 (2013)

    Article  MathSciNet  Google Scholar 

  26. A.M. Aly, M. Asai, Y. Sonda, Modelling of surface tension force for free surface flows in ISPH method. International Journal of Numerical Methods for Heat & Fluid Flow 23(3), 479–498 (2013)

    Article  MathSciNet  Google Scholar 

  27. X. Liu, P. Lin, S. Shao, An ISPH simulation of coupled structure interaction with free surface flows. J. Fluids Struct. 48, 46–61 (2014)

    Article  ADS  Google Scholar 

  28. A.M. Aly, M. Asai, Water entry of decelerating spheres simulations using improved ISPH method. Journal of Hydrodynamics 30(6), 1120–1133 (2018)

    Article  ADS  Google Scholar 

  29. A.M. Aly, M. Asai, Y. Sonoda, Simulation of free falling rigid body into water by a stabilized incompressible SPH method. Ocean Sys. Eng. 1(3), 207–222 (2011)

    Article  Google Scholar 

  30. M. Danis, M. Orhan, A. Ecder, ISPH modelling of transient natural convection. International Journal of Computational Fluid Dynamics 27(1), 15–31 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.M. Aly, M. Asai, Double-Diffusive Natural Convection with Cross-Diffusion Effects in an Anisotropic Porous Enclosure Using ISPH Method (Advancement in Process Modelling, Mass Transfer, 2015), p. 65

  32. A.M. Aly, A. Chamkha, S.-W. Lee, A. Al-Mudhaf, On Mixed Convection in an Inclined Lid-Driven Cavity with Sinusoidal Heated Walls using ISPH Method, Computational Thermal Sciences: An International Journal, (2016)

  33. A.M. Aly, Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method. International Communications in Heat and Mass Transfer 73 (2016)

  34. M.T. Nguyen, A.M. Aly, S.-W. Lee, Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method. Numerical Heat Transfer, Part A: Applications 72(1), 68–88 (2017)

    Article  ADS  Google Scholar 

  35. A.M. Aly, Z. Raizah, Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures. Int. J. Mech. Sci. 146, 125–140 (2018)

    Article  Google Scholar 

  36. A.M. Aly, S.E. Ahmed, ISPH simulations for a variable magneto-convective flow of a ferrofluid in a closed space includes open circular pipes. International Communications in Heat and Mass Transfer 110 (2020)

  37. A.M. Aly, Z.A.S. Raizah, Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles. Physica A: Statistical Mechanics and its Applications 537 (2020)

  38. M.T. Nguyen, A.M. Aly, S.-W. Lee, ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor. Meccanica 53(9), 2299–2318 (2018)

    Article  MathSciNet  Google Scholar 

  39. Y.J. Zhuang, Q.Y. Zhu, Numerical study on combined buoyancy-Marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium. Int. J. Heat Fluid Flow 71, 39–54 (2018)

    Article  Google Scholar 

  40. Z.A.S. Raizah, S.E. Ahmed, A.M. Aly, ISPH simulations of natural convection flow in E-enclosure filled with a nanofluid including homogeneous/heterogeneous porous media and solid particles. International Journal of Heat and Mass Transfer 160 (2020)

  41. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011)

    Article  Google Scholar 

  42. F. Garoosi, G. Bagheri, F. Talebi, Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. Int. J. Heat Mass Transf. 67, 362–376 (2013)

    Article  Google Scholar 

  43. V. Bianco, O. Manca, S. Nardini, Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux. Energy Convers. Manage. 77, 306–314 (2014)

  44. C.-C. Cho, C.-L. Chen, Natural convection heat transfer performance in complex-wavy-wall enclosed cavity filled with nanofluid. Int. J. Therm. Sci. 60, 255–263 (2012)

    Article  Google Scholar 

  45. J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Meth. Eng. 47(6), 1189–1214 (2000)

    Article  Google Scholar 

  46. S. Kulasegaram, J. Bonet, R. Lewis, M. Profit, High pressure die casting simulation using a Lagrangian particle method. Commun. Numer. Methods Eng. 19(9), 679–687 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Research Group Project under Grant Number (RGP.1/19/42).

Author information

Authors and Affiliations

Authors

Contributions

AMA: performed the programming of in-house code of ISPH method, analysis, and methodology. ZASR: performed writing, and review and editing. SEA: performed the investigation and writing—original draft.

Corresponding author

Correspondence to Abdelraheem M. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.M., Raizah, Z.A.S. & Ahmed, S.E. ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium. Eur. Phys. J. Spec. Top. 230, 1173–1183 (2021). https://doi.org/10.1140/epjs/s11734-021-00050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00050-y

Navigation