Skip to main content
Log in

Hundred years of the Saha equation and astrophysics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2021

This article has been updated

Abstract

Saha ionization equation, discovered 100 years ago, is widely acknowledged to transform astrophysics from a qualitative to a quantitative science. It helped in clarifying the confusion prevailing in the first 2 decades of the twentieth century with regard to the physical conditions present in the stellar atmospheres and the abundance of elements in stars. Saha equation continues to be useful in areas far removed from the physical conditions in stellar atmospheres for which it was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Ref. [59] with kind permission form European Physical Journal A

Similar content being viewed by others

Change history

References

  1. E. Hertzsprung, Z. Wiss, Photogr. Photo. 4, 43 (1906)

    Google Scholar 

  2. J. Wilsing, J. Scheiner, Publik. Ast. Obs. Potsdam 24, 74 (1919)

    Google Scholar 

  3. See e.g. G.E. Hale, W.S. Adams, Astrophys. J. 23, 400 (1906)

  4. W.S. Adams, Astrophys. J. 33, 64 (1911)

    Article  ADS  Google Scholar 

  5. J. Stefan, Sitzber. Akad. Wiss. Wien 79, 391 (1879)

    Google Scholar 

  6. H.N. Russel, Nature 93, 227 (1914)

    ADS  Google Scholar 

  7. E.A. Milne, P. Phys, Soc. Lond. 36, 94 (1924)

    Google Scholar 

  8. H.N. Russel, Nature 93, 281 (1914)

    Article  ADS  Google Scholar 

  9. H.A. Rowland, Am. J. Sci. 41, 243 (1891)

    Google Scholar 

  10. H.N. Russell, Science 39, 791 (1914)

    Article  ADS  Google Scholar 

  11. A. Fowler, J. Brit. Astron. Assoc 28, 197 (1918)

    Google Scholar 

  12. D.H. DeVorkin, R. Kenat, J. Hist. Astron. 14, 102 (1983)

    Article  ADS  Google Scholar 

  13. D.H. DeVorkin, R. Kenat, J. Hist. Astron. 14, 180 (1983)

    Article  ADS  Google Scholar 

  14. M.N. Saha, Philos. Mag. 40, 472 (1920)

    Article  Google Scholar 

  15. M.N. Saha, Philos. Mag. 40, 809 (1920)

    Article  Google Scholar 

  16. H.N. Russell, Publ. Astron. Soc. Pac. 33, 202 (1921)

    Article  ADS  Google Scholar 

  17. M.N. Saha, Philos. Mag. 41, 267 (1921)

    Article  Google Scholar 

  18. M.N. Saha, P.R. Soc, London A99, 135 (1921)

    Google Scholar 

  19. R.H. Fowler, E.A. Milne, Mon. Not. R. Astron. Soc. 83, 403 (1923)

    Article  ADS  Google Scholar 

  20. C.G. Darwin, R.H. Fowler, Philos. Mag. 44, 450 (1922)

    Article  Google Scholar 

  21. R.H. Fowler, Philos. Mag. 45, 1 (1923)

    Article  Google Scholar 

  22. J. Eggert, Phys. Z. 20, 570 (1919)

    Google Scholar 

  23. F.A. Lindemann, Philos. Mag. 38, 669 (1919)

    Article  Google Scholar 

  24. A. Rai Choudhuri, Phys. News 48(4), 27 (2018)

    Google Scholar 

  25. D. Cenadelli, J. Ast. Hist. Herit. 11, 134 (2008)

    ADS  Google Scholar 

  26. H.N. Russell, Astrophys. J. 55, 119 (1922)

    Article  ADS  Google Scholar 

  27. H.N. Russell, Astrophys. J. 55, 354 (1922)

    Article  ADS  Google Scholar 

  28. H.N. Russell, F.A. Saunders, Astrophys. J. 61, 38 (1925)

    Article  ADS  Google Scholar 

  29. H.N. Russel, J.W.Q. Stewart, Astrophys. J. 59, 197 (1924)

    Article  ADS  Google Scholar 

  30. D.H. Menzel, Ph.D. Thesis. Harvard College Observatory Circular, No. 258 (1924)

  31. C.H. Payne, Harvard College Observatory Circular,No. 252 (1924)

  32. C.H. Payne, Harvard College Observatory Circular, No. 256 (1924)

  33. C.H. Payne, Stellar Atmosphere (Harvard Observatory Monograph, Cambridge, Mas., 1925)

  34. A.S. Eddington, Mon. Not. R. Astron. Soc. 84, 308 (1924)

    Article  ADS  Google Scholar 

  35. H.H. Plaskett, Pub. Am. Ast. Soc. 4, 380 (1922)

    Google Scholar 

  36. H.H. Plaskett, Pub. Dom. Ast. Obs. 1, 325 (1922)

    ADS  Google Scholar 

  37. C.H. Payne, P. Natl, Acad. Sci. USA 11, 187 (1925)

    Article  ADS  Google Scholar 

  38. S. Rosseland, Mon. Not. R. Astron. Soc. 85, 541 (1925)

    Article  ADS  Google Scholar 

  39. C.E. Moore, H.N. Russel, Astrophys. J. 63, 1 (1926)

    Article  ADS  Google Scholar 

  40. A. Unsöld, Zeit. Phys. 44, 793 (1927)

    Article  ADS  Google Scholar 

  41. A. Unsöld, Zeit. Phys. 46, 765 (1928)

    Article  ADS  Google Scholar 

  42. J.Q. Stewart, Pop. Ast. 36, 346 (1928)

    ADS  Google Scholar 

  43. W.S. Adams, H.N. Russell, Astrophys. J. 68, 9 (1928)

    Article  ADS  Google Scholar 

  44. H.N. Russell, Astrophys. J. 70, 11 (1929)

    Article  ADS  Google Scholar 

  45. A.S. Eddington, Mon. Not. R. Astron. Soc. 92, 471 (1932)

    Article  ADS  Google Scholar 

  46. D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago, Chicago, 1968)

    Google Scholar 

  47. C. Iliadis, Nuclear Physics of Stars (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007)

    Book  Google Scholar 

  48. B.E.J. Pagel, Nucleosynthesi and Chemical Evolution of Galaxies, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  49. V. Vovchenko, K. Gallmeister, J. Schaffner-Bielich, C. Greiner, Phys. Lett. B 800, 135131 (2020)

    Article  Google Scholar 

  50. F. Hoyle, D.N.F. Dunbar, W.A. Wenzel, W. Whaling, Phys. Rev. 92, 1095 (1953)

    Google Scholar 

  51. F. Hoyle, Astrophys. J. Sup. 1, 121 (1954)

    Article  ADS  Google Scholar 

  52. W. Cook, W.A. Fowler, C.C. Lauritsen, T. Lauritsen, Phys. Rev. 107, 508 (1957)

    Article  ADS  Google Scholar 

  53. C.A. Bertulani, T. Kajino, Prog. Part. Nucl. Phys. 89, 56 (2016)

    Article  ADS  Google Scholar 

  54. A. Parikh, J. José, G. Sala, C. Iliadis, Rep. Prog. Nuc. Phys. 69, 225 (2013)

    Article  ADS  Google Scholar 

  55. B.A. Brown et al., Phys. Rev. C 65, 0452 (2002)

    Google Scholar 

  56. J. Görres, M. Wiescher, F.-K. Thielemann, Phys. Rev. C 51, 392 (1995)

    Article  ADS  Google Scholar 

  57. H. Schatz et al., Phys. Rep. 294, 167 (1998)

    Article  ADS  Google Scholar 

  58. H. Schatz, L. Bildsten, A. Cumming, M. Wiescher, Astrophys. J. 524, 1014 (1999)

    Article  ADS  Google Scholar 

  59. C. Lahiri, G. Gangopadhyay, Eur. Phys. J A 47, 87 (2011)

    Article  ADS  Google Scholar 

  60. T. Rauscher, F.K. Thielemann, At. Data Nucl. Data Tabl. 75, 1 (2000)

    Article  ADS  Google Scholar 

  61. F. Hoyle, Mon. Not. R. Astron. Soc. 106, 343 (1946)

    Article  ADS  Google Scholar 

  62. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  63. F.E. Clifford, R.J. Tayler, Mem. R. Astron. Soc. 69, 21 (1965)

    ADS  Google Scholar 

  64. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997)

    Article  ADS  Google Scholar 

  65. S. Banik, M. Hempel, D. Bandyopadhyay, Astrophys. J. Suppl. S. 214, 22 (2014)

    Article  ADS  Google Scholar 

  66. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  67. C. Lahiri, G. Gangopadhyay, Int. J. Mod. Phys. E 21, 1250042 (2012)

    Article  ADS  Google Scholar 

  68. P.A. Seeger, W.A. Fowler, D.D. Clayton, Astrophys. J. Suppl. S. 11, 121 (1965)

    Article  ADS  Google Scholar 

  69. K. Farouqi, K.-L. Kratz, B. Pfeiffer, T. Rauscher, F.-K. Thielemann, J.W. Truran, Astrophys. J. 712, 1359 (2010)

    Article  ADS  Google Scholar 

  70. M.R. Mumpower, G.C. McLaughin, R. Surman, Phys. Rev. C 85, 045801 (2012)

    Article  ADS  Google Scholar 

  71. D.M. Siegel, Eur. Phys. J. A 55, 203 (2019)

    Article  ADS  Google Scholar 

  72. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993)

    MATH  Google Scholar 

  73. P.J.E. Peebles, Astrophys. J. 153, 1 (1968)

    Article  ADS  Google Scholar 

  74. Ya B. Zeldovich, V.G. Kurt, R.A. Syunyaev, Sov. Phys. JETP USSR 28, 146 (1969)

    ADS  Google Scholar 

  75. A. Das, R. Ghosh, S. Mallik, Astrophys. J. 881, 40 (2019)

    Article  ADS  Google Scholar 

  76. J. Chluba, J. Fung, E.R. Switzer, Mon. Not. R. Astron. Soc. 423, 3227 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussions with Kanan K. Datta and A. Kundu are gratefully acknowledged. A part of this work has been carried out with financial assistance of the UGC-DRS(II) programme of the Department of Physics, University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Gangopadhyay.

Appendix A: Brief biography of Meghnad Saha

Appendix A: Brief biography of Meghnad Saha

figure a

Meghnad Saha (1893-1956) was born in East Bengal in British India, now a part of Bangladesh. He studied in Presidency college, Kolkata and then joined the newly formed University College of Science of the University of Calcutta as a research fellow. Working independently, he discovered the ionization equation. After a brief stint in London and Berlin, he joined the University of Calcutta in 1921 as a professor, and in 1923. shifted to The University of Allahabad. He came back to the University of Calcutta in 1938. Within the Department of Physics he started the Institute of Nuclear Physics, which later became an independent organization and now bears his name. He was instrumental in setting up the first cyclotron in Asia. Saha was involved in national planning and, after independence, was elected to the member of the Indian Parliament as an independent member.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, G. Hundred years of the Saha equation and astrophysics. Eur. Phys. J. Spec. Top. 230, 495–503 (2021). https://doi.org/10.1140/epjs/s11734-021-00005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00005-3

Navigation