Skip to main content
Log in

Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The contributions to the anomalous magnetic moment of the lepton L (\(L=e\, \mu\) or \(\tau\)) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton L up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios \(r=m_l/m_L\) in the whole region \(0< r < \infty\). Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin–Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of r, separately at \(r<1\) and \(r>1\). We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of \(r\in (0,\infty )\). The results of numerical calculations of the fourth-, sixth- and eighth-order corrections to the anomalous magnetic moments of leptons (\(L=e,\mu , \tau\)) with all possible vacuum polarization insertions are represented as functions of the ratio \(r=m_l/m_L\). Whenever pertinent, we compare our analytical expressions and the corresponding asymptotical expansions with the known results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The manuscript has data included as electronic supplementary material.

Notes

  1. Notice that the leading asymptotic terms for \(A_2^{(4)}(r)\) were firstly reported in Refs. [51, 52].

References

  1. P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 619 (1928)

    ADS  Google Scholar 

  2. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 887, 1 (2020)

    Article  ADS  Google Scholar 

  3. F. Jegerlehner, The anomalous magnetic moment of the muon. Springer Tracts Mod. Phys. 274, 693 (2017)

    Google Scholar 

  4. R.H. Parker, C. Yu, W. Zhong, B. Estey, H. Mueller, Measurement of the fine-structure constant as a test of the Standard Model. Science 360, 191 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. B. Abi et al., [Muon \(g-2\) Coll.], Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021)

    Article  ADS  Google Scholar 

  6. G.W. Bennett, Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  7. A. Keshavarzi, D. Nomura, T. Teubner, \(g-2\) of charged leptons, \(\alpha (M_Z^2)\) and the hyperfine splitting of muonium. Phys. Rev. D 101, 014029 (2020)

    Article  ADS  Google Scholar 

  8. A. Keshavarzi, W.J. Marciano, M. Passera, A. Sirlin, Muon \(g-2\) and \(\Delta \alpha\) connection. Phys. Rev. D 102, 033002 (2020)

    Article  ADS  Google Scholar 

  9. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\alpha (m_Z^2)\), Eur. Phys. J. C 80, 241 (2020), Erratum: [Eur. Phys. J. C 80, 410 (2020)]

  10. H. Davoudiasl, W.J. Marciano, Tale of two anomalies. Phys. Rev. D 98, 075011 (2018)

    Article  ADS  Google Scholar 

  11. L. Morel, Z. Yao, P. Clade, S. Guellati-Khelifa, Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61 (2020)

    Article  ADS  Google Scholar 

  12. G. Colangelo, M. Hoferichter, P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02, 006 (2019) arXiv:1810.00007 [hep-ph]

  13. M. Hoferichter, B.-L. Hoid, B. Kubis. Three-pion contribution to hadronic vacuum polarization. JHEP 08, 137 (2019) arXiv:1907.01556 [hep-ph]

  14. S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 593, 51 (2021). arXiv:2002.12347 [hep-lat]

    Article  ADS  Google Scholar 

  15. G. Colangelo, A.X. El-Khadra, M. Hoferichter, A. Keshavarzi, C. Lehner, P. Stoffer, T. Teubner, Data driven evaluations of Euclidean windows to scrutinixe hadronic vacuum polarizatiom. Phys. Lett. B 833, 137313 (2022)

    Article  Google Scholar 

  16. G. Colangelo, M. Davier, A.X. El-Khadra, M. Hoferichter, C. Lehner et al., Prospects for precise predictions of \(a_\mu\) in the Standard Model, Contribution to 2022 Snowmass Summer Study (2022) arXiv:2203.15810 [hep-ph]

  17. M. Cé, A. Gérardin, G. von Hippel, R. J. Hudspith, S. Kuberski et al., Window observable for the hadronic vacuum polarization contribution to the muon \(g-2\) from lattice QCD (2022) arXiv:2206.06582 [hep-lat]

  18. J. Grange et al., [Muon \(g-2\) Collaboration], Muon \((g-2)\) technical design report, (2015) arXiv:1501.06858 [physics.ins-det]

  19. A. Keshavarzi, [Muon g-2 Collaboration], The muon \(g-2\) experiment at Fermilab. EPJ Web Conf. 212, 05003 (2019)

    Article  Google Scholar 

  20. H. Iinuma, [J-PARC muon \(g-2\)/EDM Collaboration], New approach to the muon \(g-2\) and EDM experiment at J-PARC. J. Phys. Conf. Ser. 295, 012032 (2011)

    Article  Google Scholar 

  21. J.S. Schwinger, On quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416 (1948)

    Article  ADS  MATH  Google Scholar 

  22. T. Kinoshita, B. Nizic, Y. Okamoto, Eighth order QED contribution to the anomalous magnetic moment of the muon. Phys. Rev. D 41, 593 (1990)

    Article  ADS  Google Scholar 

  23. S. Laporta, The analytical contribution of the sixth order graphs with vacuum polarization insertions to the muon \((g-2)\) in QED. Nuovo Cim. A 106, 675 (1993)

    Article  ADS  Google Scholar 

  24. S. Laporta, The analytical contribution of some eighth order graphs containing vacuum polarization insertions to the muon \((g-2)\) in QED. Phys. Lett. B 312, 495 (1993)

    Article  ADS  Google Scholar 

  25. T. Kinoshita, M. Nio, Improved \(\alpha ^4\) term of the electron anomalous magnetic moment. Phys. Rev. D 73, 013003 (2006)

    Article  ADS  Google Scholar 

  26. S. Laporta, High-precision calculation of the 4-loop contribution to the electron \(g-2\) in QED. Phys. Lett. B 772, 232 (2017)

    Article  ADS  Google Scholar 

  27. J.P. Aguilar, D. Greynat, E. de Rafael, Muon anomaly from lepton vacuum polarization and the Mellin–Barnes representation. Phys. Rev. D 77, 093010 (2008)

    Article  ADS  Google Scholar 

  28. A. Kurz, T. Liu, P. Marquard, M. Steinhauser, Anomalous magnetic moment with heavy virtual leptons. Nucl. Phys. B 879, 1 (2014)

    Article  ADS  MATH  Google Scholar 

  29. A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov, M. Steinhauser, Electron contribution to the muon anomalous magnetic moment at four loops. Phys. Rev. D 93, 053017 (2016)

    Article  ADS  Google Scholar 

  30. P.A. Baikov, A. Maier, P. Marquard, The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops. Nucl. Phys. B 877, 647 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, D. Wellmann, \((g-2)_\mu\) at four loops in QED, (2017) arXiv:1708.07138 [hep-ph]

  32. S. Friot, D. Greynat, E. de Rafael, Asymptotics of Feynman diagrams and the Mellin-Barnes representation. Phys. Lett. B 628, 73 (2005)

    Article  ADS  Google Scholar 

  33. R.Z. Roskies, Comptational aspects of quantum electrdynamics: the lepton factors. AIP Conf. Proc. 23, 376 (1975). https://doi.org/10.1063/1.2947439

    Article  ADS  Google Scholar 

  34. V.B. Berestetskii, O.N. Krohnin, A.K. Khlebnikov, Concerning the radiative corrections to the \(\mu\)-meson magnetic moment, Zh. Eksp. Teor. Fiz., 30, 788 (1956) [Sov. Phys. JETP, 3, 761 (1956)]

  35. S.J. Brodsky, E. de Rafael, Suggested boson-lepton pair coupling and the anamalous magnetic moment of the muon. Phys. Rev. 168, 1620 (1968)

    Article  ADS  Google Scholar 

  36. S. Friot, D. Greynat, On convergent series representations of Mellin-Barnes integrals. J. Math. Phys. 53, 023508 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. J. Charles, E. de Rafael, D. Greynat, Mellin-Barnes approach to hadronic vacuum polarization and \(g_\mu -2\). Phys. Rev. D 97, 076014 (2018)

    Article  ADS  Google Scholar 

  38. B. Ananthanarayan, S. Friot, S. Ghosh, Three-loop QED contributions to the \(g-2\) of charged leptons with two internal fermion loops and a class of Kampe de Feriet series. Phys. Rev. D 101, 116008 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. I. Dubovyk, J. Gluza, G. Somogyi, Mellin-Barnes integrals: a primer on particle physics applications. Lect. Notes Phys. 1008, 208 (2022). https://doi.org/10.1007/978-3-031-14272-7

    Article  MATH  Google Scholar 

  40. V.A. Smirnov, Analytic tools for Feynman integrals. Springer Tracts Mod. Phys. 250, 1–296 (2012). https://doi.org/10.1007/978-3-642-34886-0

    Article  MathSciNet  MATH  Google Scholar 

  41. E.E. Boos, A.I. Davydychev, A method of evaluation massive Feynman diagrams, Theor. Math. Phys. 89, 1052 (1991) [Theor. Math. Fiz. 89, 56 (1991)]

  42. M.L. Laursen, M.A. Samuel, The \(n\)-bubble diagram contribution to \(g-2\) of the electron mathematical structure of the analytical expression. Phys. Lett. 91B, 249 (1980)

    Article  ADS  Google Scholar 

  43. M.L. Laursen, M.A. Samuel, The \(n\)-bubble diagram contribution to \(g-2\). J. Math. Phys. 22, 1114 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Petermann, Fourth order magnetic moment of the electron. Helv. Phys. Acta 30, 407 (1957)

    Google Scholar 

  45. C.M. Sommerfield, Magnetic dipole moment of the electron. Phys. Rev. 107, 328 (1957)

    Article  ADS  Google Scholar 

  46. S. Laporta, E. Remiddi, The analytical value of the electron \((g-2)\) at order \(\alpha ^3\) in QED. Phys. Lett. B 379, 283 (1996)

    Article  ADS  Google Scholar 

  47. S. Laporta, New results on \(g-2\) calculation. J. Phys. Conf. Ser. 1085(2), 022004 (2018)

    Article  Google Scholar 

  48. S. Laporta, Four-loop QED contributions to the electron \(g-2\). J. Phys. Conf. Ser. 1138(1), 012001 (2018)

    Article  Google Scholar 

  49. B.E. Lautrup, On high order estimates in QCD. Phys. Lett. B 69, 109 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Eidelman, M. Passera, Theory of the tau lepton anomalous magnetic moment. Mod. Phys. Lett. A 22, 159 (2007)

    Article  ADS  MATH  Google Scholar 

  51. B.E. Lautrup, E. de Rafael, Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron. Phys. Rev. 174, 1835 (1968)

    Article  ADS  Google Scholar 

  52. H. Suura, E.H. Wichmann, Magnetic moment of the mu meson. Phys. Rev. 105, 1930 (1957)

    Article  ADS  Google Scholar 

  53. G. Li, R. Mendel, M.A. Samuel, Precise mass ratio dependence of fourth order lepton anomalous magnetic moments: The effect of a new measurement of \(m_\tau\). Phys. Rev. D 47, 1723 (1993)

    Article  ADS  Google Scholar 

  54. A. Czarnecki, M. Skrzypek, The muon anomalous magnetic moment in QED: three loop electron and tau contributions. Phys. Lett. B 449, 354 (1999)

    Article  ADS  Google Scholar 

  55. A.V. Kotikov, S. Teber, Multi-loop techniques for massless Feynman diagram calculations, Phys. Part. Nucl. 50(1), 1 (2019) [arXiv:1805.05109 [hep-th]]

  56. O.P. Solovtsova, V.I. Lashkevich, A.V. Sidorov, Some analytic results for the contribution to the anomalous magnetic moments of leptons due to the polarization of vacuum via lepton loops. EPJ Web Conf. 222, 03007 (2019)

    Article  Google Scholar 

  57. S. Laporta, High-precision calculation of the 4-loop QED contribution to the slope of the Dirac form factor. Phys. Lett. B 800, 135137 (2020). https://doi.org/10.1016/j.physletb.2019.135137

    Article  MathSciNet  Google Scholar 

  58. S. Laporta, (https://doi.org/10.22323/1.383.0023)

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with A.V. Kotikov, A. L. Kataev and O. V. Teryaev and their support of the present activity. We also thank A. V. Sidorov for discussions and cooperation in the earlier stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Kaptari.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MW 303 KB)

Appendix A: Some useful relations

Appendix A: Some useful relations

Direct employment of the Cauchy residue theorem to the integrals, Eqs. (40), (50), (53), (57), (59) and (68) results in expressions containing a variety of special functions, including polygammas \(\psi ^{(m)}(n)\), polylogarithms \(\textrm{Li}_n(r)\), generalized harmonic functions \(H_n^{(m)}\), Hurwits–Lerch transcendent \(\Phi (r,n,a)\), etc. Using the below relations, the number of necessary special functions can be essentially reduced. This allows one to reconcile explicitly our results to the ones known in the literature and reported in different forms with different special functions, cf. Refs. [23, 32, 56]. Also, by using the appropriate properties of the remaining functions for \(r<1\) and \(r>1\), one can express the corresponding coefficients \(A_2(r<1)\) through the coefficients \(A_2(r>1)\), which allows one to assert that there exist, for each Feynman diagram, a common analytical function valid in the whole interval \((0\,<\,r\,\infty )\).

$$\begin{aligned}{} {} \Phi (r,2,1/2) &= \frac{2}{\sqrt{r}} \left[ { \textrm{Li}_2 } (\sqrt{r}) - { \textrm{Li}_2 } (-\sqrt{r}) \right]; \nonumber \\{} {} \Phi (r,2,3/2) &=-\frac{4}{r} +\frac{2}{r\sqrt{r}} \left[ { \textrm{Li}_2 } (\sqrt{r}) - { \textrm{Li}_2 } (-\sqrt{r}) \right] ; \nonumber \\{} {} \Phi (r,2,5/2) &=-\frac{4}{9r} - \frac{4}{r^2} +\frac{2}{r^2\sqrt{r}} \left[ { \textrm{Li}_2 } (\sqrt{r}) - { \textrm{Li}_2 } (-\sqrt{r}) \right] ; \nonumber \\{} {} { \textrm{Li}_2 } (1-r)+ { \textrm{Li}_2 } \left( 1-\frac{1}{r}\right) &=-\frac{1}{2} \ln ^2(r); \quad \mathrm{(r>0)}; \nonumber \\{} {} { \textrm{Li}_2 } (r) + { \textrm{Li}_2 } (1/r) &= -\frac{\pi ^2}{6} - \frac{1}{2} \ln ^2(-r); \quad \mathrm{(r>1)}; \nonumber \\{} {} \mathrm{{Li}_3} (r) - \mathrm{{Li}_3} (1/r) &= -\frac{\pi ^2}{6}\ln (-r) - \frac{1}{6} \ln ^3(-r); \quad \mathrm{(r>1)} \nonumber \\{} {} \mathrm{{Li}_3} (r) - \mathrm{{Li}_3} (1/r) &= \frac{\pi ^2}{6}\ln (-1/r) + \frac{1}{6} \ln ^3(-1/r); \quad \mathrm{(r<1)} \nonumber \\{} {} { \textrm{Li}_4 } (r) + { \textrm{Li}_4 } (1/r) &=-\frac{7\pi ^4}{360} -\frac{\pi ^2}{12}\ln^2 (-r) - \frac{1}{24} \ln ^4(-r); \quad \mathrm{(r>1)} \nonumber \\{} {} \mathrm{Li_2} \left( \frac{1-r}{1+r} \right) - \mathrm{Li_2}\left( - \frac{1-r}{1+r} \right) &= \mathrm{Li_2}(-r) - \mathrm{Li_2}(r) +\bigg (\ln (1+r)\ln (r) - \ln (1-r)\bigg )\ln (r) + \frac{\pi ^2}{4}; \nonumber \\{} {} \mathrm{Li_n}(r) + \mathrm{Li_n}(-r) &= \frac{1}{2^{n-1}} \mathrm{Li_n}(r^2). \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} \quad { \mathrm{arctanh}(r)}=\frac{1}{2}\bigg [ \ln (1+r)-\ln (1-r)\bigg ]; \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \quad \mathrm{H_n^{(1)}} = \psi ^{(1)}(n+1)+\gamma ; \quad \textrm{H}_n^{(2)}=\frac{\pi ^2}{6}-\psi ^{(1)}(n+1), \end{aligned}$$
(A3)

where \(\mathrm{Li_n}(r)\), \(\Phi (r,s,a)\), \(\mathrm{H_n^{(m)}}\) and \(\psi ^{(m)}(n)\) are the polylogarithm, Lerch transcendent, generalized harmonic number and Euler polygamma functions, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovtsova, O.P., Lashkevich, V.I. & Kaptari, L.P. Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation. Eur. Phys. J. Plus 138, 212 (2023). https://doi.org/10.1140/epjp/s13360-023-03834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03834-4

Navigation