Skip to main content
Log in

Stability analysis of holographic RG flows in 3d supergravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study holographic RG flows in a 3d supergravity model from the side of the dynamical system theory. The gravity equations of motion are reduced to an autonomous dynamical system. Then we find equilibrium points of the system and analyze them for stability. We also restore asymptotic solutions near the critical points. We find two types of solutions: with asymptotically AdS metrics and hyperscaling violating metrics. We write down possible RG flows between an unstable (saddle) UV fixed point and a stable (stable node) IR fixed point. We also analyze bifurcations in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. One can choose \(w_{0} =w_{1}=\frac{1}{4a^2{\dot{A}}_{0}}\).

References

  1. K.G. Wilson, J. Kogut, The renormalization group and the \(\epsilon \)-expansion. Phys. Rept. 12, 75–199 (1974)

    Article  ADS  Google Scholar 

  2. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. Phys. Rev. D 8, 3633 (1973)

    Article  ADS  Google Scholar 

  3. E.T. Akhmedov, A Remark on the AdS / CFT correspondence and the renormalization group flow. Phys. Lett. B 442, 152–158 (1998). [arXiv:hep-th/9806217]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. de Boer, E.P. Verlinde, H.L. Verlinde, On the holographic renormalization group. JHEP 08, 003 (2000). [arXiv:hep-th/9912012]

    Article  MathSciNet  MATH  Google Scholar 

  5. J. de Boer, The Holographic renormalization group. Fortsch. Phys. 49, 339 (2001). [arXiv:hep-th/0101026]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H.J. Boonstra, K. Skenderis, P.K. Townsend, The domain wall/QFT correspondence. JHEP 01, 003 (1999). [arXiv:hep-th/9807137]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Bianchi, D.Z. Freedman, K. Skenderis, Holographic renormalization. Nucl. Phys. B 631, 159 (2002). [arXiv:hep-th/0112119]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D.Z. Freedman, S.S. Gubser, K. Pilch, N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem. Adv. Theor. Math. Phys. 3, 363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bianchi, D.Z. Freedman, K. Skenderis, How to go with an RG flow. JHEP 08, 041 (2001). [arXiv:hep-th/0105276]

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Papadimitriou, K. Skenderis, AdS / CFT correspondence and geometry. IRMA Lect. Math. Theor. Phys. 8, 73–101 (2005). [arXiv:hep-th/0404176]

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Papadimitriou, K. Skenderis, Correlation functions in holographic RG flows. JHEP 10, 075 (2004). [arXiv:hep-th/0407071]

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT. JHEP 05, 075 (2007). [arXiv:hep-th/0703152]

    Article  ADS  MathSciNet  Google Scholar 

  13. I. Heemskerk, J. Polchinski, Holographic and Wilsonian renormalization groups. JHEP 1106, 031 (2011). [arXiv:1010.1264 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S.S. Gubser, Curvature singularities: the Good, the bad, and the naked. Adv. Theor. Math. Phys. 4, 679–745 (2000). [arXiv:hep-th/0002160]

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Gukov, RG flows and Bifurcations. Nucl. Phys. B 919, 583–638 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. F. Kuipers, U. Gürsoy, Yu. Kuznetsov, Bifurcations in the RG-Flow of QCD. JHEP 07, 075 (2019). [arXiv:1812.05179 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Holography and thermodynamics of 5D Dilaton-gravity. JHEP 05, 033 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Kiritsis, W. Li, F. Nitti, Holographic RG flow and the quantum effective action. Fortsch. Phys. 62, 389 (2014). [arXiv:1401.0888 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. E. Kiritsis, F. Nitti, L. Silva Pimenta, Exotic RG flows from holography. Fortsch. Phys. 65, 1600120 (2017). [arXiv:1611.05493 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J.K. Ghosh, E. Kiritsis, F. Nitti, L.T. Witkowski, Holographic RG flows on curved manifolds and quantum phase transitions. JHEP 05, 034 (2018). [arXiv:1711.08462 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. E. Kiritsis, F. Nitti, L. Silva Pimenta, Exotic holographic RG flows at finite temperature. JHEP 10, 173 (2018). [arXiv:1805.01769 [hep-th]]

    ADS  MathSciNet  MATH  Google Scholar 

  22. J.K. Ghosh, E. Kiritsis, F. Nitti, L.T. Witkowski, Holographic RG flows on curved manifolds and the \(F\)-theorem. JHEP 02, 055 (2019). [arXiv:1810.12318 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. I.Y. Aref’eva, A.A. Golubtsova, G. Policastro, Exact holographic RG flows and the \(A_1\times A_1\) Toda chain. JHEP 05, 117 (2019). [arXiv:1803.06764 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  24. I.Y. Arefeva, K. Rannu, Holographic anisotropic background with confinement-deconfinement phase transition. JHEP 05, 206 (2018). [arXiv:1802.05652 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  25. I.Y. Aref’eva, Holographic renormalization group flows. Theor. Math. Phys. 200, 1313–1323 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. I.Y. Aref’eva, K. Rannu, Holographic renormalization group flow in anisotropic matter. Theoret. and Math. Phys. 202(2), 272–283 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C. Cartwright, M. Kaminski, Inverted c-functions in thermal states. JHEP 01, 161 (2022). [arXiv:2107.12409 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Berg, H. Samtleben, An Exact holographic RG flow between 2-d conformal fixed points. JHEP 05, 006 (2002). [arXiv:hep-th/0112154]

    Article  ADS  MathSciNet  Google Scholar 

  29. N.S. Deger, Renormalization group flows from D = 3, N=2 matter coupled gauged supergravities. JHEP 11, 025 (2002). [arXiv:hep-th/0209188]

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Chatrabhuti, P. Karndumri, Vacua and RG flows in N=9 three dimensional gauged supergravity. JHEP 10, 098 (2010). [arXiv:1007.5438 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N.S. Deger, A. Kaya, E. Sezgin, P. Sundell, Matter coupled AdS3 supergravities and their black strings. Nucl. Phys. B 573, 275 (2000). [arXiv:hep-th/9908089]

    Article  ADS  MATH  Google Scholar 

  32. Ch. Park, D. Ro, J.H. Lee, c-theorem of the entanglement entropy. JHEP 11, 165 (2018). [arXiv:1806.09072 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Ya. Aref’eva, I. Bakhmatov, K. Gubarev, H. Dimov, E.Musaev for useful stimulating discussions and comments. The work is supported by Russian Science Foundation grant 20-12-00200. We also thank to the EPJ Plus referee for careful reading of our paper and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia A. Golubtsova.

Geometric characteristics of the metric and stress-energy tensor

Geometric characteristics of the metric and stress-energy tensor

The metric in the domain wall coordinates is described by the following expression:

$$\begin{aligned} ds^2=e^{2A(w)}\left( -dt^2+dx^2\right) +dw^2. \end{aligned}$$
(A.1)

Then non-zero Ricci tensor components take the form:

$$\begin{aligned} R_{tt}= e^{2 A} ( {\ddot{A}}+2{\dot{A}}^2),\quad R_{xx}=-e^{2 A} ({\ddot{A}}+2 {\dot{A}}^2),\quad R_{ww}=-2 ({\ddot{A}}+{\dot{A}}^2), \end{aligned}$$
(A.2)

and the Ricci scalar is given by:

$$\begin{aligned} R=-2 (2 {\ddot{A}}+3 {\dot{A}}^2). \end{aligned}$$
(A.3)

The components of the Einstein tensor are:

$$\begin{aligned} G_{tt}=-e^{2A}({\ddot{A}}+{\dot{A}}^2),\quad G_{xx}=e^{2A}({\ddot{A}}+{\dot{A}}^2),\quad G_{ww}={\dot{A}}^2. \end{aligned}$$
(A.4)

Stress-energy-momentum tensor, defined as

$$\begin{aligned} T_{\mu \nu }=\frac{1}{a^2}\left( \partial _{\mu }\phi \partial _{\nu }\phi -\frac{1}{2}g_{\mu \nu }\partial _{\sigma }\phi \partial ^{\sigma }\phi \right) -\frac{1}{2}g_{\mu \nu }V, \end{aligned}$$
(A.5)

will have the following non-zero components:

$$\begin{aligned} T_{tt}= & {} \frac{1}{a^2}\left( -g_{tt}{\dot{\phi }}^2g^{ww}\right) -\frac{1}{2}g_{tt}V=\frac{e^{2 A}}{2}\left( \frac{{\dot{\phi }}^2}{a^2}+V\right) , \end{aligned}$$
(A.6)
$$\begin{aligned} T_{xx}= & {} \frac{1}{a^2}\left( -\frac{1}{2}g_{xx}{\dot{\phi }}^2g^{ww}\right) -\frac{1}{2}g_{xx}V=-\frac{e^{2 A}}{2}\left( \frac{{\dot{\phi }}^2}{a^2}+V\right) , \end{aligned}$$
(A.7)
$$\begin{aligned} T_{ww}= & {} \frac{1}{a^2}\left( {\dot{\phi }}^2-\frac{1}{2}{\dot{\phi }}^2\right) -\frac{1}{2}g_{ww}V=\frac{1}{2}\left( \frac{{\dot{\phi }}^2}{a^2}-V\right) . \end{aligned}$$
(A.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsova, A.A., Usova, M.K. Stability analysis of holographic RG flows in 3d supergravity. Eur. Phys. J. Plus 138, 260 (2023). https://doi.org/10.1140/epjp/s13360-023-03808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03808-6

Navigation