Skip to main content

Advertisement

Log in

Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The first-principles calculation has been carried out for the investigation of electronics, structural, and optical properties of A2MM′X6 by tight binding approaches. Among 30 combinations, only six systems, namely Rb2AgInBr6, Cs2AgInBr6, Cs2InBiCl6, Rb2TlAsBr6, Cs2TlAsBr6, and Cs2TlSbBr6, are found to be suitable for solar cell applications because of their suitable electronic properties. In addition, the obtained negative formation energy of Rb2AgInBr6, Cs2AgInBr6, Cs2InBiCl6, Rb2TlAsBr6, Cs2TlAsBr6, Cs2TlSbBr6 confirmed their thermodynamic stability. Moreover, the lack of imaginary frequency in phonon dispersion band structure implies that their cubic structure is stable against lattice distortion. Moreover, the obtained lower R (%) with higher values α and σ revealed that they are suitable for solar cell applications. The detailed optical analyses revealed that the Rb2TlAsBr6 has the highest α and σ in the entire visible energy range indicating that it is the most promising material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The datasets would be available from Mr Gourav upon reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: It is noticeable from Fig. 5(d) that Rb2AgInBr6, Cs2AgInBr6, Cs2InBiCl6, Rb2TlAsBr6, Cs2TlAsBr6, and Cs2TlSbBr6 have low reflectivity (https://doi.org/10.1039/D0RA01764G).]

References

  1. J. Chen, S. Zhou et al., Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 4, 11 (2016)

    Article  ADS  Google Scholar 

  2. M.M. Lee, J. Teuscher et al., Efficient hybrid solar cells based on meso-super structured organometal halide perovskites. Science 338, 643 (2012)

    Article  ADS  Google Scholar 

  3. S.D. Stranks et al., Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013)

    Article  ADS  Google Scholar 

  4. G. Xing et al., Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344 (2013)

    Article  ADS  Google Scholar 

  5. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013)

    Article  Google Scholar 

  6. J. Sun et al., Organic/Inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018)

    Article  Google Scholar 

  7. M.D. Graef, M.E. McHenry, Structure of materials. An introduction to crystallography, diffraction and symmetry. Acta Crystallogr. Sect. A 68, 523 (2012)

    MATH  Google Scholar 

  8. A. Kojima, K. Teshima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  9. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart (U.S. Department Energy, 2020)

  10. N.G. Park, H. Segawa, Research direction toward theoretical efficiency in perovskite solar cells. ACS Photon. 5, 2970 (2018)

    Article  Google Scholar 

  11. Y. Huang et al., Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 33, 1730 (2017)

    Google Scholar 

  12. G. Xing, N. Mathews, S. Sun, S.S. Lim et al., Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344 (2013)

    Article  ADS  Google Scholar 

  13. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith et al., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014)

    Article  Google Scholar 

  14. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman et al., Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014)

    Article  ADS  Google Scholar 

  15. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2014)

    Article  Google Scholar 

  16. J.T.W. Wang et al., Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9, 2892 (2016)

    Article  Google Scholar 

  17. D. Bryant et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655 (2016)

    Article  Google Scholar 

  18. J.P. Bastos et al., Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Adv. Energy Mater. 8, 1800554 (2018)

    Article  Google Scholar 

  19. Y. Li et al., Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 121, 3904 (2017)

    Article  Google Scholar 

  20. K.C. Tang, P. You et al., Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Yan Sol. RRL 2, 1800075 (2018)

    Article  Google Scholar 

  21. Z. Wang et al., Very large tunnelling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 1 (2018)

    ADS  Google Scholar 

  22. M. Kim et al., Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609 (2018)

    Article  Google Scholar 

  23. S. Li et al., Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 9, 2507 (2017)

    Google Scholar 

  24. R. Yang et al., Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018)

    Article  Google Scholar 

  25. P. Gao, B.M. Yusoff, How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 9, 5028 (2018)

    Article  ADS  Google Scholar 

  26. J. Liang et al., CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009 (2017)

    Article  Google Scholar 

  27. L.A. Frolova et al., Efficient and stable all-inorganic perovskite solar cells based on nonstoichiometric CsxPbI2Brx (x > 1) alloys. J. Mater. Chem. C 7, 5314 (2019)

    Article  Google Scholar 

  28. G. Grancini et al., One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017)

    Article  ADS  Google Scholar 

  29. P. Li et al., Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 30, 1805323 (2018)

    Article  Google Scholar 

  30. S. Gharibzadeh et al., Perovskite solar cells: record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1970079 (2019)

    Article  Google Scholar 

  31. D. Lin et al., Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. Nano Energy 59, 61 (2019)

    Google Scholar 

  32. M. Pazoki et al., Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals. Phys. Rev. B 93, 144105 (2016)

    Article  ADS  Google Scholar 

  33. X. Zhao, J. Yang et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Chem. Soc. 139, 2630 (2017)

    Article  Google Scholar 

  34. X.G. Zhao, D. Yang et al., Cu–In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718 (2017)

    Article  Google Scholar 

  35. X.-G. Zhao, J. Hyang et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017)

    Article  Google Scholar 

  36. E.T. McClure, M.R. Ball et al., Cs2AgBiX6(X=Br, Cl): new visible light absorbing, lead-free halide Perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Article  Google Scholar 

  37. M.M.S. Karim et al., Anion distribution, structural distortion, and symmetry-driven optical band gap bowing in mixed halide Cs2SnX6 vacancy ordered double Perovskites. Chem. Mater. 31, 9430–9444 (2019)

    Article  ADS  Google Scholar 

  38. T. Nakajima et al., Discovery of Pb-free perovskite solar cells via high-throughput simulation on the K computer. J. Phys. Chem. Lett. 8, 4826–4831 (2017)

    Article  Google Scholar 

  39. A.J. Kale et al., Inorganic lead-free Cs2AuBiCl6 Perovskite absorber and Cu2O hole transport material based single-junction solar cells with 22.18% power conversion efficiency. Adv. Theory Simul. 4, 2000224 (2021)

    Article  ADS  Google Scholar 

  40. Y. Saeed et al., Cs2NaGaBr6: a new lead-free and direct band gap halide double perovskite. RSC Adv. 10, 17444 (2020)

    Article  ADS  Google Scholar 

  41. Q. Mahmood et al., First principle study of lead-free double perovskites halides Rb2Pd(Cl/Br)6 for solar cells and renewable energy devices: a quantum DFT. Int. J. Energy Res. 10, 14995 (2021)

    Article  Google Scholar 

  42. M. Nabi et al., Potential lead-free small band gap halide double perovskites Cs2CuMCl6 (M -= Sb, Bi) green technology. Sci. Rep. 11, 12945 (2021)

    Article  ADS  Google Scholar 

  43. Z. Lu, H. Zhang et al., High-figure-of-merit thermoelectric La-doped A-site-deficient SrTiO3 ceramic. Chem. Mater. 28(3), 925–935 (2016)

    Article  Google Scholar 

  44. R. Muhammad, Y. Shuai et al., First-principles study on alkaline earth metal atom substituted monolayer boron nitride (BN). J. Mater. Chem. C 5, 8112–8127 (2017)

    Article  Google Scholar 

  45. M. Rafique, Y. Shuai et al., Manipulating intrinsic behaviors of graphene by substituting alkaline earth metal atoms in its structure. RSC Adv. 7, 16360–16370 (2017)

    Article  ADS  Google Scholar 

  46. S. Al-Qaisi, R. Ahmed, B. Ul Haq, D.P. Rai, S.A. Tahir, A comprehensive first-principles computational study on the physical properties of lutetium aluminum perovskite LuAlO3. Mater. Chem. Phys. 250, 123148 (2020)

    Article  Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  48. D.P. Samah Al-Qaisi, B. Ul Rai, R.A. Haq, T.V. Vu, M. Khuili, S.A. Tahir, H.H. Alhashim, First-principles investigation of structural, elastic, thermodynamic, electronic and optical properties of lead-free double perovskites halides: Cs2LiYX6 (X = Br, I). Mater. Chem. Phys. 258, 123945 (2021)

    Article  Google Scholar 

  49. M. Sk, Recent progress of lead-free halide double perovskites for green energy and other applications. Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05596-9

    Article  Google Scholar 

  50. M.A. Khan, A. Kashyap, A.K. Solanki, T. Nantiyal, S. Anlnck, Phys. Rev. B Condens. Matter Mater. Phys. 23, 16974 (1993)

    Article  ADS  Google Scholar 

  51. C. Li et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. 208(B64), 702 (2008)

    Article  Google Scholar 

  52. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke–Johnson exchange potential. Phys. Rev. B Condens. Matter Mater. Phys. 83, 1–10 (2011)

    Article  Google Scholar 

  53. M. Jamal, S. Jalali Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592 (2014)

    Article  Google Scholar 

  54. J. Wang, S. Yip, S. Phillpot, D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  55. Q. Mahmood, M. Yaseen, B.U. Haq, A. Laref, A. Nazir, The study of mechanical and thermoelectric behavior of MgXO3 (X = Si, Ge, Sn) for energy applications by DFT. Chem. Phys. 524, 106 (2019)

    Article  Google Scholar 

  56. S. Nair et al., Cs2TlBiI6: a new lead-free halide double perovskite with direct band gap. J. Phys. Condens. Matter. 31, 445902 (2019)

    Article  Google Scholar 

  57. P.R. Varadwaz, A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) double perovskites: a transition-metal-based semiconducting material series with remarkable optics. Nanomaterials 10(5), 973 (2020)

    Article  Google Scholar 

  58. S. Yang et al., Novel lead-free material Cs2PtI6 with narrow bandgap and ultra-stability for its photovoltaic application. ACS Energy Lett. 1, 949 (2016)

    Google Scholar 

  59. F. Wooxen, Optical properties of solids (Academic, New York, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gourav or K. Ramachndran.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourav, Ramachndran, K. Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. Eur. Phys. J. Plus 138, 177 (2023). https://doi.org/10.1140/epjp/s13360-023-03790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03790-z

Navigation