Skip to main content

Advertisement

Log in

Design and numerical investigation of a dual-core photonic crystal fiber refractive index sensor for cancer cells detection

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A double-core photonic crystal fiber (PCF) based refractive index sensor is introduced to detect six different cancer-affected cells. A comparatively large air hole is considered in the middle of the fiber to be injected with fluids of normal and cancer-affected cells. Transmission length, the diameter of the air hole filling with samples, and the diameter of two other important air holes are studied in this work to attain a more appropriate performance of the presented sensor. The performance of the suggested sensor is studied by analyzing the variations in the transmission spectrum because of changes in the normal and affected cell refractive indices. The results display that the proposed sensor attains spectral sensitivities of 10,000 nm/RIU, 11,250 nm/RIU, 10,714.28 nm/RIU, 12,857.14 nm/RIU, 11,428.57 nm/RIU, and 12,500 nm/RIU corresponding to Basal cell cancer, cervical cancer HeLa cells, Jurkat cancer cell, PC12 cancer cell, MDA-MB-231 breast cancer cell, and MCF-7 breast cancer cell, respectively. Also, resolution as an important parameter in sensors evaluation is studied and the obtained results are \(1\times {10}^{-5}\), \(8.89\times {10}^{-6}\), \(9.33\times {10}^{-6}\), \(7.78\times {10}^{-6}\), \(8.75\times {10}^{-6}\), and \(8\times {10}^{-6}\) for the above-mentioned cells, respectively. Moreover, the maximum FOM value achieved for the reported biosensor is 22.03 1/RIU for the Basal cell. The proposed refractive index sensor can be implemented to detect different cancer cells because of its high sensitivity and simple design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.]

References

  1. A.M.R. Pinto, M. Lopez-amo, Photonic crystal fibers for sensing applications. J. Sens. (2012). https://doi.org/10.1155/2012/598178

    Article  Google Scholar 

  2. H. Arman, S. Olyaee, Realization of low confinement loss acetylene gas sensor by using hollow-core photonic bandgap fiber. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02969-x

    Article  Google Scholar 

  3. A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach (erratum). J. Nanophotonics. 12(01), 1 (2017). https://doi.org/10.1117/1.JNP.12.019901

    Article  Google Scholar 

  4. M. Seifouri, M.A. Rouini, S. Olyaee, Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes. Opt. Rev. 25(5), 555–562 (2018). https://doi.org/10.1007/s10043-018-0447-y

    Article  Google Scholar 

  5. M. Mohammadi, S. Olyaee, M. Seifouri, Design and optimization of passive optical gyroscope, based on nanostructures ring resonators for rotation sensing applications. Opt. Quantum Electron. 54(11), 1–10 (2022)

    Article  Google Scholar 

  6. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.M. Adikan, Photonic crystal fiber based plasmonic sensors. Sens. Actuators, B Chem. 243, 311–325 (2017)

    Article  Google Scholar 

  7. A. Shafkat, A.N.Z. Rashed, H.M. El-Hageen, A.M. Alatwi, Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection. J. Sol–Gel Sci. Technol. 98(1), 202–211 (2021)

    Article  Google Scholar 

  8. R.K. Gangwar, V. Bhardwaj, V.K. Singh, Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Opt. Eng. 55(2), 26111 (2016). https://doi.org/10.1117/1.OE.55.2.026111

    Article  Google Scholar 

  9. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, Y. Zhang, High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. J. Opt. Soc. Am. B 33(7), 1330–1334 (2016). https://doi.org/10.1364/JOSAB.33.001330

    Article  ADS  Google Scholar 

  10. M. De, V.K. Singh, Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt. Laser Technol. 106, 61–68 (2018). https://doi.org/10.1016/j.optlastec.2018.03.022

    Article  ADS  Google Scholar 

  11. F. He, W. Shi, J. Zhang, Z. Hui, F. Zhan, Polarization splitter based on dual-core photonic crystal fiber with tellurite glass. Optik (Stuttg) 164, 624–631 (2018). https://doi.org/10.1016/j.ijleo.2018.03.061

    Article  ADS  Google Scholar 

  12. P. Bing, S. Huang, J. Sui, H. Wang, Z. Wang, Analysis and Improvement of a dual-core photonic crystal fiber sensor. Sensors 18, 2051 (2018). https://doi.org/10.3390/s18072051

    Article  ADS  Google Scholar 

  13. H. Sarker, M. Faisal, M.A. Mollah, Slotted photonic crystal fiber-based plasmonic biosensor. Appl. Opt. 60(2), 358–366 (2021). https://doi.org/10.1364/AO.412951

    Article  ADS  Google Scholar 

  14. Z. Guiyao, H. Zhiyun, L. Shuguang, H. Lantian, Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt. 45(18), 4433–4436 (2006). https://doi.org/10.1364/AO.45.004433

    Article  ADS  Google Scholar 

  15. D. Pysz, I. Kujawa, M. Ryszard Stepien, A.F. Klimczak, L. Marcin Franczyk, J.B. Kociszewski, K. Harasny, R. Buczynski, Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Polish Acad. Sci. Tech. Sci. 62(4), 667–682 (2014). https://doi.org/10.2478/bpasts-2014-0073

    Article  Google Scholar 

  16. R.K. Gangwar, V.K. Singh, Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics Nanostruct. - Fundam. Appl. 15, 46–52 (2015). https://doi.org/10.1016/j.photonics.2015.03.001

    Article  ADS  Google Scholar 

  17. H. Wang, X. Yan, S. Li, G. An, X. Zhang, High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice. Sensors (Basel) (2016). https://doi.org/10.3390/s16101655

    Article  Google Scholar 

  18. Y. Ying, N. Hu, G. Yuan Si, K. Xu, N. Liu, J.Z. Zhao, Magnetic field and temperature sensor based on D-shaped photonic crystal fiber. Optik (Stuttg). 176, 309–314 (2019). https://doi.org/10.1016/j.ijleo.2018.09.107

    Article  ADS  Google Scholar 

  19. H. Arman, S. Olyaee, Photonic bandgap fiber-based gas sensor with high sensitivity and high birefringence. J. Comput. Electron. (2022). https://doi.org/10.1007/s10825-022-01933-6

    Article  Google Scholar 

  20. A.K. Sharma, Plasmonic biosensor for detection of hemoglobin concentration in human blood: design considerations. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4816272

    Article  Google Scholar 

  21. M.R. Rakhshani, Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct. - Fundam. Appl. 43, 100883 (2021). https://doi.org/10.1016/j.photonics.2020.100883

    Article  Google Scholar 

  22. “World Health Organisation.” https://www.who.int/news-room/fact-sheets/detail/cancer (accessed Oct. 30, 2022)

  23. R.C. Pink, E.M. Beaman, P. Samuel, S.A. Brooks, D.R.F. Carter, Utilising extracellular vesicles for early cancer diagnostics: benefits, challenges and recommendations for the future. Br. J. Cancer 126(3), 323–330 (2022). https://doi.org/10.1038/s41416-021-01668-4

    Article  Google Scholar 

  24. X. Chen, J. Gole, A. Gore, Q. He, M. Lu, J. Min, L. Jin, Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 11(1), 3475 (2020). https://doi.org/10.1038/s41467-020-17316-z

    Article  ADS  Google Scholar 

  25. S. Jindal, S. Sobti, M. Kumar, S. Sharma, M.K. Pal, Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 16(10), 3705–3710 (2016). https://doi.org/10.1109/JSEN.2016.2536105

    Article  ADS  Google Scholar 

  26. N.R. Ramanujam, I.S. Amiri, S.A. Taya, S. Olyaee, R. Udaiyakumar, A. Pasumpon Pandian, K.S. Joseph Wilson, P. Mahalakshmi, P.P. Yupapin, Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 25(1), 189–196 (2019). https://doi.org/10.1007/s00542-018-3947-6

    Article  Google Scholar 

  27. A. Panda, P.D. Pukhrambam, F. Wu, W. Belhadj, Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 136(8), 809 (2021). https://doi.org/10.1140/epjp/s13360-021-01796-z

    Article  Google Scholar 

  28. A.H.M. Almawgani, M.G. Daher, S.A. Taya, I. Colak, S.K. Patel, O.M. Ramahi, Highly sensitive nano-biosensor based on a binary photonic crystal for cancer cell detection. Opt. Quantum Electron. 54(9), 554 (2022). https://doi.org/10.1007/s11082-022-03978-0

    Article  Google Scholar 

  29. M.A. Mollah, M. Yousufali, I.M. Ankan, M.M. Rahman, H. Sarker, K. Chakrabarti, Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens Res. 29, 100344 (2020). https://doi.org/10.1016/j.sbsr.2020.100344

    Article  Google Scholar 

  30. G.P. Mishra, D. Kumar, V.S. Chaudhary, G. Murmu, Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Opt. 59(33), 10321–10329 (2020). https://doi.org/10.1364/AO.409221

    Article  ADS  Google Scholar 

  31. Y. Wang, S. Li, M. Wang, A high-sensitivity refractive index sensor based on an external gold coating of a square-lattice photonic crystal fiber. Phys. Status Solidi Rapid Res. Lett. 15(6), 2100001 (2021). https://doi.org/10.1002/pssr.202100001

    Article  ADS  Google Scholar 

  32. Z. Wang, T. Taru, T.A. Birks, J.C. Knight, Y. Liu, J. Du, Coupling in dual-core photonic bandgap fibers: theory and experiment. Opt. Exp. 15(8), 4795 (2007). https://doi.org/10.1364/oe.15.004795

    Article  Google Scholar 

  33. M. Aslam Mollah, M. Yousufali, M.R. Bin Asif Faysal, M. Rabiul Hasan, M.B. Hossain, I.S. Amiri, Highly sensitive photonic crystal fiber salinity sensor based on Sagnac interferometer. Results Phys. 16, 103022 (2020). https://doi.org/10.1016/j.rinp.2020.103022

    Article  Google Scholar 

  34. W.-P. Huang, Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A 11(3), 963–983 (1994). https://doi.org/10.1364/JOSAA.11.000963

    Article  ADS  Google Scholar 

  35. C. Zhou, Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013). https://doi.org/10.1016/j.optcom.2012.09.060

    Article  ADS  Google Scholar 

  36. M.A. Mollah, R.J. Usha, S. Tasnim, K. Ahmed, Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor. Opt. Quantum Electron. 52(9), 421 (2020). https://doi.org/10.1007/s11082-020-02542-y

    Article  Google Scholar 

  37. M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, M.S. Uddin, "Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11(4), 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2924825

    Article  Google Scholar 

  38. C. Liu, J. Wang, X. Jin, F. Wang, L. Yang, J. Lv, F. Guanglai, X. Li, Q. Liu, T. Sun, P.K. Chu, Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings. Optik (Stuttg) 207, 164466 (2020). https://doi.org/10.1016/j.ijleo.2020.164466

    Article  ADS  Google Scholar 

  39. A. Ramola, A. Marwaha, S. Singh, Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 127(9), 643 (2021). https://doi.org/10.1007/s00339-021-04785-2

    Article  ADS  Google Scholar 

  40. N. Ayyanar, G. Thavasi Raja, M. Sharma, D. Sriram Kumar, Photonic Crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18(17), 7093–7099 (2018). https://doi.org/10.1109/JSEN.2018.2854375

    Article  ADS  Google Scholar 

  41. A.H. Aly, Z.A. Zaky, Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics (Guildf). 104, 102991 (2019)

    Article  Google Scholar 

  42. A. Yasli, Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16(5), 1605–1612 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab).

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

AE and MM designed and preformed simulations and analyzed data; MS contributed to writing—review and editing; SO contributed to supervision, edited and prepared the final draft of the manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehyaee, A., Mohammadi, M., Seifouri, M. et al. Design and numerical investigation of a dual-core photonic crystal fiber refractive index sensor for cancer cells detection. Eur. Phys. J. Plus 138, 129 (2023). https://doi.org/10.1140/epjp/s13360-023-03749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03749-0

Navigation