Skip to main content
Log in

Bound state solutions of the Klein–Gordon equation under a non-central potential: the Eckart plus a ring-shaped potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report the bound state solutions of a novel non-central potential, the Eckart plus a ring-shaped potential, in the Klein–Gordon equation by using the Nikiforov–Uvarov method. We apply a developed scheme to overcome the centrifugal term. The energy eigenvalues and the corresponding normalised wave function of a mentioned system are presented in a closed and compact form. We also discuss various special cases related to our considered potential which are utility for other physical systems, consistent with previous studies. We then compute the eigenvalues and eigenfunctions numerically for arbitrary quantum numbers to show the accuracy of our results. It is shown that our results are sensitive to the parameter \(\delta\) as well as the quantum numbers \(n_{\textrm{r}}\) and N or l, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The present work has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

Notes

  1. By this approximate method, the bound state energy levels of Schrödinger equation with this potential have been calculated in Ref. [25]. These results have been shown to be in better agreement with previous work by Lucha and Schöberl [67] for the short potential range.

References

  1. W. Greiner, Relativistics Quantum Mechanics, 3rd edn. (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-662-04275-5

  2. V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations (Kluwer Academic Publishers, Dordrecht, 1990). https://www.springer.com/gp/book/9780792302155

  3. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basel, 1988). https://doi.org/10.1007/978-1-4757-1595-8

  4. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

    Article  ADS  Google Scholar 

  5. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechnics (World Scientific, 2001). https://doi.org/10.1142/4687

  6. L.E. Gendenshtein, JETP Lett. 38, 356 (1983) http://jetpletters.ru/ps/1822/article_27857.pdf

    ADS  Google Scholar 

  7. L.E. Gendenshtein, I.V. Krive, Sov. Phys. Usp. 28, 645 (1985). https://doi.org/10.1070/PU1985v028n08ABEH003882

    Article  ADS  Google Scholar 

  8. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordrecht, 2007). https://doi.org/10.1007/978-1-4020-5796-0

  9. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A Math. Gen. 36, 11807 (2003). https://doi.org/10.1088/0305-4470/36/47/008

    Article  ADS  Google Scholar 

  10. A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987). https://doi.org/10.1103/PhysRevA.35.911

    Article  ADS  Google Scholar 

  11. B. Roy, R. Roychoudhury, J. Phys. A Math. Gen. 20, 3051 (1987). https://doi.org/10.1088/0305-4470/20/10/048

    Article  ADS  Google Scholar 

  12. J.M. Cai, P.Y. Cai, A. Inomata, Phys. Rev. A 34, 4621 (1986). https://doi.org/10.1103/PhysRevA.34.4621

    Article  ADS  Google Scholar 

  13. P.M. Stevenson, Phys. Rev. D 23, 2916 (1981). https://doi.org/10.1103/PhysRevD.23.2916

    Article  ADS  Google Scholar 

  14. O. Klein, Z. Phys. 37, 895 (1926). https://doi.org/10.1007/BF01397481

    Article  ADS  Google Scholar 

  15. V. Fock, Z. Phys. 38, 242 (1926). https://doi.org/10.1007/BF01399113

    Article  ADS  Google Scholar 

  16. V. Fock, Z. Phys. 39, 226 (1926). https://doi.org/10.1007/BF01321989

    Article  ADS  Google Scholar 

  17. W. Gordon, Z. Phys. 40, 117 (1926). https://doi.org/10.1007/BF01390840

    Article  ADS  Google Scholar 

  18. M. Znojil, J. Phys. A Math. Gen. 14, 383 (1981). https://doi.org/10.1088/0305-4470/14/2/015

    Article  ADS  Google Scholar 

  19. F. Dominguez-Adame, Phys. Lett. A 136, 175 (1989). https://doi.org/10.1016/0375-9601(89)90555-0

    Article  ADS  Google Scholar 

  20. G. Chen, Z.D. Chen, Z.M. Lou, Phys. Lett. A 331, 374 (2004). https://doi.org/10.1016/j.physleta.2004.09.032

    Article  ADS  Google Scholar 

  21. C.L. Pekeris, Phys Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98

    Article  ADS  Google Scholar 

  22. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

    Article  ADS  Google Scholar 

  23. C.S. Jia, T. Chen, L.G. Cui, Phys Lett. A 373, 1621 (2009). https://doi.org/10.1016/j.physleta.2009.03.006

    Article  ADS  Google Scholar 

  24. S.M. Ikhdair, Eur. Phys. J. A 39, 307–314 (2009). https://doi.org/10.1140/epja/i2008-10715-2

    Article  ADS  Google Scholar 

  25. S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A Math. Theor. 40, 10535 (2007). https://doi.org/10.1088/1751-8113/40/34/010

    Article  ADS  Google Scholar 

  26. G.F. Wei, S.H. Dong, Phys. Lett. A 373, 49 (2008). https://doi.org/10.1016/j.physleta.2008.10.064

    Article  ADS  Google Scholar 

  27. W.C. Qiang, S.H. Dong, Phys. Scr. 79, 045004 (2009). https://doi.org/10.1088/0031-8949/79/04/045004

    Article  ADS  Google Scholar 

  28. H.I. Ahmadov, C. Aydin, N.S. Huseynova, O. Uzun, Int. J. Mod. Phys. E 22, 1350072 (2013). https://doi.org/10.1142/S0218301313500729

    Article  ADS  Google Scholar 

  29. A.I. Ahmadov, C. Aydin, O. Uzun, Int. J. Mod. Phys. A 29, 1450002 (2014). https://doi.org/10.1142/S0217751X1450002X

    Article  ADS  Google Scholar 

  30. H.I. Ahmadov, S.I. Jafarzade, M.V. Qocayeva, Int. J. Mod. Phys. A 30, 1550193 (2015). https://doi.org/10.1142/S0217751X15501936

    Article  ADS  Google Scholar 

  31. V.H. Badalov, Int. J. Mod. Phys. E 25, 1650002 (2016). https://doi.org/10.1142/S0218301316500026

    Article  ADS  Google Scholar 

  32. A.I. Ahmadov, S.M. Aslanova, M.S. Orujova, S.V. Badalov, S.H. Dong, Phys. Lett. A 383, 3010 (2019). https://doi.org/10.1016/j.physleta.2019.06.043

    Article  ADS  Google Scholar 

  33. A.I. Ahmadov, M. Demirci, M.F. Mustamin, S.M. Aslanova, M.S. Orujova, Eur. Phys. J. Plus 136, 208 (2021). https://doi.org/10.1140/epjp/s13360-021-01163-y

    Article  Google Scholar 

  34. J.Y. Guo, Z.Q. Sheng, Phys. Lett. A. 338, 90 (2005). https://doi.org/10.1016/j.physleta.2005.02.026

    Article  ADS  Google Scholar 

  35. C. Berkdemir, A. Berkdemir, R. Sever, J. Phys. A Math. Gen. 39, 13455 (2006). https://doi.org/10.1088/0305-4470/39/43/005

    Article  ADS  Google Scholar 

  36. V.H. Badalov, H.I. Ahmadov, S.V. Badalov, Int. J. Mod. Phys. E 19, 1463 (2010). https://doi.org/10.1142/S0218301310015862

    Article  ADS  Google Scholar 

  37. G.F. Wei, Z.Z. Zhen, S.H. Dong, Cent. Eur. J. Phys. 7, 175 (2009). https://doi.org/10.2478/s11534-008-0143-9

    Article  Google Scholar 

  38. C.S. Jia, T. Chen, S. He, Phys. Lett. A 377, 682 (2013). https://doi.org/10.1016/j.physleta.2013.01.016

    Article  ADS  Google Scholar 

  39. G.F. Wei, S.H. Dong, Phys. Lett. B. 686, 288 (2010). https://doi.org/10.1016/j.physletb.2010.02.070

    Article  ADS  Google Scholar 

  40. A. Arda, R. Sever, J. Math. Phys. 52, 092101 (2011). https://doi.org/10.1063/1.3641246

    Article  ADS  Google Scholar 

  41. M. Hamzavi, S.M. Ikhdair, K.E. Thylwe, Chin. Phys. B 22, 040301 (2013). https://doi.org/10.1088/1674-1056/22/4/040301

    Article  ADS  Google Scholar 

  42. Z. Wang, Z.W. Long, C.Y. Long, L.Z. Wang, Indian J. Phys. 89, 1059 (2015). https://doi.org/10.1007/s12648-015-0677-9

    Article  ADS  Google Scholar 

  43. C.Y. Chen, D.S. Sun, F.L. Lu, Phys. Lett. A 370, 219 (2007). https://doi.org/10.1016/j.physleta.2007.05.079

    Article  ADS  Google Scholar 

  44. A.N. Ikot, L.E. Akpabio, E.J. Uwah, Electron. J. Theor. Phys. 8, 225 (2011). http://ejtp.com/articles/ejtpv8i25p225.pdf

  45. M. Simsek, H. Egrifes, J. Phys. A Math. Gen. 37, 4379 (2004). https://doi.org/10.1088/0305-4470/37/15/007

    Article  ADS  Google Scholar 

  46. H. Egrifes, R. Sever, Int. J. Theoret. Phys. 46, 935 (2007). https://doi.org/10.1007/s10773-006-9251-8

    Article  Google Scholar 

  47. W.C. Qiang, R.S. Zhou, Y. Gao, Phys. Lett. A 371, 201 (2007). https://doi.org/10.1016/j.physleta.2007.04.109

    Article  ADS  Google Scholar 

  48. W.C. Qiang, Chin. Phys. 13, 575 (2004). https://doi.org/10.1088/1009-1963/13/5/002

    Article  Google Scholar 

  49. O.J. Oluwadare, K.J. Oyewumi, O.A. Babalola, Afr. Rev. Phys. 7, 0016 (2012). http://lamp.ictp.it/index.php/aphysrev/article/view/543

  50. A.I. Ahmadov, M. Naeem, M.V. Qocayeva, V.A. Tarverdiyeva, Int. J. Mod. Phys. A 33, 1850021 (2018). https://doi.org/10.1142/S0217751X18500215

    Article  ADS  Google Scholar 

  51. A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Phys. Lett. A 384, 126372 (2020). https://doi.org/10.1016/j.physleta.2020.126372

    Article  Google Scholar 

  52. A.I. Ahmadov, S.M. Nagiyev, M.V. Qocayeva, K. Uzun, V.A. Tarverdiyeva, Int. J. Mod. Phys. A 33, 1850203 (2018). https://doi.org/10.1142/S0217751X18502032

    Article  ADS  Google Scholar 

  53. P. Aspoukeh, S.M. Hamad, Chin. J. Phys. 68, 224 (2020). https://doi.org/10.1016/j.cjph.2020.09.002

    Article  Google Scholar 

  54. I.J. Njoku, E. Onyeocha, C.P. Onyenegecha, M. Onuoha, E.K. Egeonu, P. Nwaokafor, Int. J. Quantum Chem. 2022, e27050 (2022). https://doi.org/10.1002/qua.27050

    Article  Google Scholar 

  55. H. Hartmann, Theor. Chim. Acta. 24, 201 (1972). https://doi.org/10.1007/BF00641399

    Article  Google Scholar 

  56. A. Hautot, J. Math. Phys. 14, 1320 (1973)

    Article  ADS  Google Scholar 

  57. S.H. Dong, G.H. Sun, M.L. Gassou, Phys. Lett. A 328, 299 (2005). https://doi.org/10.1016/j.physleta.2004.06.037

    Article  ADS  Google Scholar 

  58. C.Y. Chen, S.H. Dong, Phys. Lett. A 335, 374 (2005). https://doi.org/10.1016/j.physleta.2004.12.062

    Article  ADS  Google Scholar 

  59. A.D. Alhaidari, J. Phys. A Math. Gen. 38, 3409 (2005). https://doi.org/10.1088/0305-4470/38/15/012

    Article  ADS  Google Scholar 

  60. H. Karayer, D. Demirhan, Eur. Phys. J. Plus 137, 527 (2022). https://doi.org/10.1140/epjp/s13360-022-02755-y

    Article  Google Scholar 

  61. S.H. Dong, M. Lozada-Cassou, Phys. Scr. 74, 285 (2006). https://doi.org/10.1088/0031-8949/74/2/024

    Article  ADS  Google Scholar 

  62. S.M. Nagiyev, A.I. Ahmadov, Int. J. Mod. Phys. A 34, 1950089 (2019). https://doi.org/10.1142/S0217751X19500891

    Article  ADS  Google Scholar 

  63. S.M. Nagiyev, A.I. Ahmadov, V.A. Tarverdiyeva, Adv. High Energy Phys. 2020, 1356384 (2020). https://doi.org/10.1155/2020/1356384

    Article  Google Scholar 

  64. C. Eckart, Phys. Rev. 35, 1303 (1930). https://doi.org/10.1103/PhysRev.35.1303

    Article  ADS  Google Scholar 

  65. J.J. Weiss, J. Chem. Phys. 41, 1120 (1964). https://doi.org/10.1063/1.1726015

    Article  ADS  Google Scholar 

  66. A. Cimas, M. Aschi, C. Barrientos, V.M. Rayón, J.A. Sordo, A. Largo, Chem. Phys. Lett. 374, 594 (2003). https://doi.org/10.1016/S0009-2614(03)00771-1

    Article  ADS  Google Scholar 

  67. W. Lucha, F.F. Shöberl, Int. J. Mod. Phys. C 10, 607 (1999). https://doi.org/10.1142/S0129183199000450

    Article  ADS  Google Scholar 

  68. X.Y. Liu, G.F. Wei, C.Y. Long, Int. J. Theor. Phys. 48, 463 (2009). https://doi.org/10.1007/s10773-008-9821-z

    Article  Google Scholar 

  69. A.A. Khelashvili, T.P. Nadareishvili, Am. J. Phys. 79, 668 (2011). https://doi.org/10.1119/1.3546099

    Article  ADS  Google Scholar 

  70. A.A. Khelashvili, T.P. Nadareishvili, Phys. Part. Nucl. Lett. 12, 11 (2015). https://doi.org/10.1134/S1547477115010148

    Article  Google Scholar 

  71. A.A. Khelashvili, T.P. Nadareishvili, Int. J. Mod. Phys. E 26, 1750043 (2017). https://doi.org/10.1142/S0218301317500434

    Article  ADS  Google Scholar 

  72. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1964). https://doi.org/10.1119/1.15378

Download references

Acknowledgements

The work of M. Demirci was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) in the framework of 2219-International Postdoctoral Research Fellowship Program. We would like to thank the anonymous reviewers for the positive suggestions, which have greatly helped us in making improvements to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Demirci.

Appendix A: Nikiforov–Uvarov method

Appendix A: Nikiforov–Uvarov method

The NU method has been a very useful tool in the fields of physics and applied mathematics since its introduction. The power of the method in obtaining the energy levels of all bound states for some solvable quantum systems has been proven by many works [24, 35, 36, 41, 42, 45, 46, 51, 53, 54].

In this section, we briefly introduce the NU method [3]. It is used to solve the second-order differential equations that can be converted to a generalized equation of hypergeometric-type in the following form

$$\begin{aligned} \frac{\hbox {d}^2U_n(x)}{\hbox {d}x^2} + \frac{{\tilde{\tau }}(x)}{\sigma (x)} \frac{\hbox {d}U_n(x)}{\hbox {d}x} + \frac{{\tilde{\sigma }}(x)}{\sigma ^2(x)} U_n(x) =0, \end{aligned}$$
(A.1)

where the coefficients \(\sigma (x)\) and \({\tilde{\sigma }}(x)\) can be a maximum second-order polynomial while \({\tilde{\tau }}(x)\) can be a first-order kind. A particular solution of the above equation is constructed as a multiple of two independent parts:

$$\begin{aligned} U_n(x) = \phi (x) y_n(x). \end{aligned}$$
(A.2)

It reduces Eq. (A.1) to a hypergeometric-type equation,

$$\begin{aligned} \sigma (x) \frac{^2 y_n(x)}{x^2} + \tau (x) \frac{y_n(x)}{x} + \lambda y_n(x) = 0. \end{aligned}$$
(A.3)

The function \(\phi (x)\) needs to satisfy the logarithmic derivative

$$\begin{aligned} \frac{1}{\phi (x)}\frac{\phi (x)}{x} = \frac{\pi (x)}{\sigma (x)}, \end{aligned}$$
(A.4)

with

$$\begin{aligned} \pi (x) = \frac{\sigma '(x)-{\tilde{\tau }}(x)}{2} \pm \sqrt{\frac{1}{4} \biggl [\sigma '(x)-{\tilde{\tau }}(x)\biggr ]^2 -{\tilde{\sigma }}(x) + k\sigma (x)}, \end{aligned}$$
(A.5)

where primes denote the derivative according to x and it can be first-order at most. The k-values in Eq. (A.5) are possible to be evaluated if the expression under the square root must be a square of polynomial. This is possible, if and only if its discriminant is zero, i.e. \(\varDelta =b^2-4 a c =0\).

As a result, the equation reduces to a hypergeometric type equation, where one of its solutions is \(y_n(x)\). Hence the polynomial expression \({\bar{\sigma }}(x)=\tilde{\sigma }(x)+\pi ^2(x)+\pi (x)[\tilde{\tau }(x)-\sigma ^{'}(x)]+\pi ^{'}(x)\sigma (x)\) can be divided by a factor of \(\sigma (x)\), such that \({\bar{\sigma }}/\sigma (x)=\lambda\). Here, we consider the following relations

$$\begin{aligned} \lambda =k+\frac{\pi (x)}{x}, \end{aligned}$$
(A.6)
$$\begin{aligned} \tau (x) = {\tilde{\tau }}(x) + 2\pi (x), \end{aligned}$$
(A.7)

where \(\tau (x)\) must have a negative derivative. A unique n-degree polynomial solution can be found for the hypergeometric type equation if

$$\begin{aligned} \lambda _{n}=-n\frac{\hbox {d}\tau }{\hbox {d}x}-\frac{n(n-1)}{2}\frac{\hbox {d}^2\sigma }{\hbox {d}x^2}, \quad (n=0,1,2,\ldots ). \end{aligned}$$
(A.8)

Accordingly, the energy spectrum equation is obtained from a relationship between Eqs. (A.6) and (A.8).

On the other hand, the polynomial solution \(y_n(x)\), which is the hypergeometric type function, is given by the Rodrigues relation

$$\begin{aligned} y_n(x) = \frac{C_n}{\rho (x)}\frac{^n}{x^n}\Big [\rho (x)\sigma ^n(x)\Big ], \end{aligned}$$
(A.9)

where \(C_n\) is the normalization constant, and \(\rho (x)\) stands for the weight function. The weight function \(\rho (x)\) obeys [3]

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}x}\biggl [\sigma (x) \rho (x)\biggr ] = \tau (x)\rho (x), \end{aligned}$$
(A.10)

which is called as the Pearson differential equation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadov, A.I., Demirci, M., Mustamin, M.F. et al. Bound state solutions of the Klein–Gordon equation under a non-central potential: the Eckart plus a ring-shaped potential. Eur. Phys. J. Plus 138, 92 (2023). https://doi.org/10.1140/epjp/s13360-023-03715-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03715-w

Navigation