Skip to main content
Log in

Surface light modulation by sea ice and phytoplankton survival in a convective flow model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Plankton dynamics depend in a complex manner on a variety of physical phenomena, according to both experimental and numerical data. In particular, experimental field studies have highlighted the relation between phytoplankton survival and turbulent upwelling and downwelling from thermal convection. Recent numerical works have also shown the importance of accounting for advective transport by persistent structures in simulation models. In nutrient-rich polar marine environments phytoplankton blooms are critically limited by light availability under ice-covered waters. Such heterogeneity of the light intensity distribution, in association with a large-scale coherent fluid flow, can give rise to nontrivial growth dynamics. In this work we extend a previous advection-reaction-diffusion model of phytoplankton light-limited vertical dynamics in the presence of convective transport. Specifically, we consider horizontally heterogeneous light conditions through the use of two regions with different production regimes, modelling the absence (presence) of light under (in between) obstacles. Such a model is intended as an idealized representation of nonuniformly ice-covered polar waters. By means of numerical simulations, we find that the main role of advective transport is to hinder phytoplankton growth, but also that such effect depends on the positions of the obstacles with respect to the upwelling and downwelling flow regions. Furthermore, we show that the sinking speed due to the density difference between phytoplankton organisms and water, while small, plays an important role, which depends on how it adds to the flow. These results indicate that advective transport can have a crucial impact on the survival conditions of sinking phytoplankton species in polar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Mann, J. Lazier, Dynamics of marine ecosystems: biological-physical interactions in the oceans (Wiley, New York, 2005)

    Book  Google Scholar 

  2. T. Kiørboe, A mechanistic approach to plankton ecology (Princeton University Press, Princeton, 2018)

    Book  Google Scholar 

  3. J.C. Prairie, K.R. Sutherland, K.J. Nickols, A.M. Kaltenberg, Limnol. Oceanogr. 2, 121–145 (2012)

    Article  Google Scholar 

  4. J.R. Taylor, R. Ferrari, Limnol. Oceanogr. 56, 2293–2307 (2011)

    Article  ADS  Google Scholar 

  5. C. Lindemann, A. Visser, P. Mariani, Patrizio, J. R. Soc. Interface 14, 20170453 (2017)

    Article  Google Scholar 

  6. V.B. Tergolina, E. Calzavarini, G. Mompean, S. Berti, Phys. Rev. E 104, 065106 (2021)

    Article  ADS  Google Scholar 

  7. K.E. Lowry, R.S. Pickart, V. Selz, M.M. Mills, A. Pacini, K.M. Lewis, H.L. Joy-Warren, C. Nobre, G.L. van Dijken, P.-L. Grondin, J. Ferland, K.R. Arrigo, J. Geophys. Res. 123, 90–109 (2018)

    Article  ADS  Google Scholar 

  8. M. Ardyna, C.J. Mundy, N. Mayot, L.C. Matthes, L. Oziel, C. Horvat, E. Leu, P. Assmy, V. Hill, P. Matrai, M. Gale, I.A. Melnikov, K.R. Arrigo, Front. Mar. Sci. 7, 608032 (2020)

    Article  Google Scholar 

  9. K.R. Arrigo, D.K. Perovich, R.S. Pickart, Z.W. Brown, G.L. van Dijken, K.E. Lowry, M.M. Mills, M.A. Palmer, W.M. Balch, F. Bahr, N.R. Bates, C. Benitez-Nelson, B. Bowler, E. Brownlee, J.K. Ehn, K.E. Frey, R. Garley, S.R. Laney, L. Lubelczyk, J. Mathis, A. Matsuoka, B.G. Mitchell, G.W.K. Moore, E. Ortega-Retuerta, S. Pal, C.M. Polashenski, R.A. Reynolds, B. Schieber, H.M. Sosik, M. Stephens, J.H. Swift, Science 336, 1408 (2012)

    Article  ADS  Google Scholar 

  10. K.R. Arrigo, G.L. van Dijken, Progr. Oceanogr. 136, 60–70 (2015)

    Article  ADS  Google Scholar 

  11. P. Assmy, M. Fernández-Méndez, P. Duarte, A. Meyer, A. Randelhoff, C.J. Mundy, L.M. Olsen, H.M. Kauko, A. Bailey, M. Chierici, L. Cohen, A.P. Doulgeris, J.K. Ehn, A. Fransson, S. Gerland, H. Hop, S.R. Hudson, N. Hughes, P. Itkin, G. Johnsen, J.A. King, B.P. Koch, Z. Koenig, S. Kwasniewski, S.R. Laney, M. Nicolaus, A.K. Pavlov, C.M. Polashenski, C. Provost, A. Rösel, M. Sandbu, G. Spreen, L.H. Smedsrud, A. Sundfjord, T. Taskjelle, A. Tatarek, J. Wiktor, P.M. Wagner, A. Wold, H. Steen, M.A. Granskog, Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  12. E. Boles, C. Provost, V. Garçon, C. Bertosio, M. Athanase, Z. Koenig, N. Sennéchael, J. Geophys. Res. 125, e2019JC015608 (2020)

    Article  ADS  Google Scholar 

  13. H.U. Sverdrup, HU, J. Cons. Int. Explor. Mer 18, 287–295 (1953)

    Article  Google Scholar 

  14. R.W. Lindsay, J. Zhang, J. Clim. 18, 4879–4894 (2005)

    Article  ADS  Google Scholar 

  15. M.C. Serreze, M.M. Holland, J. Stroeve, Julienne, Science 315, 1533–1536 (2007)

    Article  ADS  Google Scholar 

  16. R. Kwok, G. Spreen, S. Pang, J. Geophys. Res. 118, 2408–2425 (2013)

    Article  ADS  Google Scholar 

  17. N. Shigesada, A. Okubo, J. Math. Biol. 12, 311–326 (1981)

    Article  MathSciNet  Google Scholar 

  18. J. Huisman, F.J. Weissing, Ecology 75, 507–520 (1994)

    Article  Google Scholar 

  19. J. Huisman, M. nd Arrayás, U. Ebert, B. Sommeijer, Am. Nat. 159, 245–254 (2002)

    Article  Google Scholar 

  20. J. Huisman, B. Sommeijer, J. Sea Res. 48, 83–96 (2002)

    Article  ADS  Google Scholar 

  21. S.A. Thorpe, The turbulent ocean (Cambridge University Press, New York, 2005)

    Book  Google Scholar 

  22. A.D.D. Craik, S. Leibovich, J. Fluid Mech. 73, 401–426 (1976)

    Article  ADS  Google Scholar 

  23. M.A. Bees, Appl. Sci. Res. 59, 141–158 (1997)

    Article  Google Scholar 

  24. S.A. Thorpe, Ann. Rev. Fluid Mech. 36, 55–79 (2004)

    Article  ADS  Google Scholar 

  25. G.K. Vallis, Atmospheric and oceanic fluid dynamics (Cambridge University Press, New York, 2017)

    Book  MATH  Google Scholar 

  26. J. Huisman, P. van Oostveen, F.J. Weissing, Limnol. Oceanogr. 44, 1781–1787 (1999)

    Article  ADS  Google Scholar 

  27. T.H. Solomon, J.P. Gollub, Phys. Rev. A 38, 6280 (1988)

    Article  ADS  Google Scholar 

  28. G. Lacorata, A. Vulpiani, Phys. Rev. E 95, 043106 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. La Forgia, D. Cavaliere, S. Espa, F. Falcini, G. Lacorata, Sci. Rep. 12, 1–12 (2022)

    Article  Google Scholar 

  30. M. Abel, A. Celani, D. Vergni, A. Vulpiani, Phys. Rev. E 64, 046307 (2001)

    Article  ADS  Google Scholar 

  31. S. Berti, D. Vergni, F. Visconti, A. Vulpiani, Phys. Rev. E 72, 036302 (2005)

    Article  ADS  Google Scholar 

  32. M. Nicolaus, C. Katlein, J. Maslanik, S. Hendricks, Geophys. Res. Lett. 39, L24501 (2012)

    Article  ADS  Google Scholar 

  33. H. Stommel, J. Mar. Res. 8, 24–29 (1949)

    Google Scholar 

  34. A.B. Ryabov, B. Blasius, Math. Model. Nat. Phenom. 3, 42–86 (2008)

    Article  MathSciNet  Google Scholar 

  35. B. Rabbanipour Esfahani, S.C. Hirata, S. Berti, E. Calzavarini, Phys. Rev. Fluids 3, 053501 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Cencini for interesting discussions about the role of diffusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Berti.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tergolina, V.B., Calzavarini, E., Mompean, G. et al. Surface light modulation by sea ice and phytoplankton survival in a convective flow model. Eur. Phys. J. Plus 137, 1387 (2022). https://doi.org/10.1140/epjp/s13360-022-03586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03586-7

Navigation