Skip to main content
Log in

Nonlocal classical theory of gravity: massiveness of nonlocality and mass shielding by nonlocality

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nonlocal generalization of classical (Newtonian) gravity field theory is proposed by using the general fractional calculus in the Luchko form. Nonlocal analogs of the standard Gauss’s law and the “local” potentiality of gravitational field are suggested in integral and differential forms. Nonlocality is described by the pairs of Sonin kernels that belong to the Luchko set. The general fractional vector calculus, which can be considered as nonlocal vector calculus, is used as a mathematical tool for formulation of nonlocal field theory. General fractional (GF) vector operators, such as GF flux, GF circulation, GF divergence, GF curl operators and GF gradient are defined to describe nonlocalities in space. Examples of using the general nonlocal Gauss’s law to calculate gravity fields are proposed for the case of spherically symmetric nonlocality and mass distribution. The nonlocal effects caused by nonlocality in space are discussed. Among such effects, the following effects are described: effects of mass shielding by nonlocality, violation of local potentiality by nonlocality, and violation of local solenoidality by nonlocality (massiveness of nonlocality). A possibility of using the nonlocal theory of gravity to explain some nonstandard properties of dark matter and dark energy through the properties of nonlocality is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. C. Wetterich, Effective nonlocal Euclidean gravity. Gen. Relativ. Gravit. 30, 159–172 (1998). https://doi.org/10.1023/A:1018837319976. arXiv:gr-qc/9704052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. Kluson, Non-local gravity from Hamiltonian point of view. J. High Energy Phys. (2011). https://doi.org/10.1007/JHEP09(2011)001

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Biswas, J.A.R. Cembranos, J.I. Kapusta, Finite temperature solitons in non-local field theories from p-adic strings. Phys. Rev. D 82, 08502085028 (2010). https://doi.org/10.1103/PhysRevD.82.085028

    Article  ADS  Google Scholar 

  4. S.Y. Vernov, Nonlocal gravitational models and exact solutions. Phys. Part. Nucl. 43, 694–696 (2012). https://doi.org/10.1134/S1063779612050371. arXiv:1202.1172

    Article  Google Scholar 

  5. E. Elizalde, E.O. Pozdeeva, S.Y. Vernov, De Sitter universe in nonlocal gravity. Phys. Rev. D 85, 044002 (2012). https://doi.org/10.1103/PhysRevD.85.044002

    Article  ADS  Google Scholar 

  6. A.S. Koshelev, S.Y. Vernov, Cosmological solutions in nonlocal models. Phys. Part. Nucl. Lett. 11, 960–963 (2014). https://doi.org/10.1134/S1547477114070255

    Article  Google Scholar 

  7. Y.I. Zhang, M. Sasaki, Screening of cosmological constant in non-local cosmology. Int. J. Mod. Phys. D 21, 1250006 (2012). https://doi.org/10.1142/S021827181250006X

    Article  ADS  MATH  Google Scholar 

  8. A. Conroy, A. Mazumdar, S. Talaganis, A. Teimouri, Nonlocal gravity in D dimensions: propagators, entropy, and a bouncing cosmology. Phys. Rev. D 92, 124051 (2015). https://doi.org/10.1103/PhysRevD.92.124051

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Modesto, L. Rachwal, Nonlocal quantum gravity: a review. Int. J. Mod. Phys. D 26(11), 1730020 (2017). https://doi.org/10.1142/S0218271817300208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Belgacem, Y. Dirian, A. Finke, S. Foffa, M. Maggiore, Gravity in the infrared and effective nonlocal models. J. Cosmol. Astropart. Phys. 2020(4), 010 (2020). https://doi.org/10.1088/1475-7516/2020/04/010

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Capozziello, F. Bajardi, Nonlocal gravity cosmology: an overview. Int. J. Mod. Phys. D 31(06), 230009 (2022). https://doi.org/10.1142/S0218271822300099

    Article  MathSciNet  Google Scholar 

  12. P. Joshi, U. Kumar, S. Panda, Hamiltonian formalism for nonlocal gravity models. Int. J. Geom. Methods Mod. Phys. 19(03), 2250036 (2022). https://doi.org/10.1142/S0219887822500360

    Article  MathSciNet  Google Scholar 

  13. M. Hameeda, B. Pourhassan, M.C. Rocca, A.B. Brzo, Two approaches that prove divergence free nature of non-local gravity. Eur. Phys. J. C (2021). https://doi.org/10.1140/epjc/s10052-021-08940-0

    Article  Google Scholar 

  14. H.-J. Blome, C. Chicone, F.E. Hehl, B. Mashhoon, Nonlocal modification of Newtonian gravity. Phys. Rev. D 81, 065020 (2010). https://doi.org/10.1103/PhysRevD.81.065020

    Article  ADS  Google Scholar 

  15. F.E. Hehl, B. Mashhoon, Nonlocal gravity simulates dark matter. Phys. Lett. B 673(4–5), 279–282 (2009). https://doi.org/10.1016/j.physletb.2009.02.033. arXiv:0812.1059

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Mashhoon, Toward a nonlocal theory of gravitation. Ann. der Phyzik 519(1), 57–66 (2007). https://doi.org/10.1002/andP.20075190106. arXiv:hep-th/0608010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Roshan, B. Mashhoon, Dynamical friction in nonlocal gravity. Astrophys. J. 922(1), 9 (2021). https://doi.org/10.3847/1538-4357/ac20d8

    Article  ADS  Google Scholar 

  18. C. Chicone, B. Mashhoon, Nonlocal Newtonian cosmology. J. Math. Phys. 57, 072501 (2016). https://doi.org/10.1063/1.4958902

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. Mashhoon, Nonlocal Gravity (Oxford University Press, Oxford, 2017). https://doi.org/10.1093/oso/9780198803805.001.0001

    Book  MATH  Google Scholar 

  20. A. Giusti, MOND-like fractional Laplacian theory. Phys. Rev. D 101(12), 124029 (2020). https://doi.org/10.1103/PhysRevD.101.124029

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Giusti, R. Garrappa, G. Vachon, On the Kuzmin model in fractional Newtonian gravity. Eur. Phys. J. Plus. (2020). https://doi.org/10.1140/epjp/s13360-020-00831-9

    Article  Google Scholar 

  22. G. Calcagni, Classical and quantum gravity with fractional operators. Class. Quantum Gravity 38(16), 165005 (2021). https://doi.org/10.1088/1361-6382/ac1081

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E.N. Saridakis, R. Lazkoz, V. Salzano, P.V. Moniz, S. Capozziello, J.B. Jimenez, M. De Laurentis, G.J. Olmo, Modified Gravity and Cosmology (Springer Nature Switzerland AG, Cham, 2021). https://doi.org/10.1007/978-3-030-83715-0

    Book  MATH  Google Scholar 

  24. V.C. Rubin, W.K. Ford Jr., N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238, 471–487 (1980). https://doi.org/10.1086/158003

    Article  ADS  Google Scholar 

  25. V. Springel, S. White, A. Jenkins et al., Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005). https://doi.org/10.1038/nature03597. arXiv:astro-ph/0504097

    Article  ADS  Google Scholar 

  26. D.N. Spergel, R. Bean, O. Dore et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for Cosmology. Astrophys. J. Suppl. Ser. 170(2), 377 (2007). https://doi.org/10.1086/513700

    Article  ADS  Google Scholar 

  27. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

  28. G. Bertone, D. Hooper, A history of dark matter. Rev. Mod. Phys. 90(4), 045002 (2018). https://doi.org/10.1103/RevModPhys.90.045002

    Article  ADS  Google Scholar 

  29. G.N. Izmailov, Constrains on an uniform model for Dark Matter and Dark Energy. in Journal of Physics: conference Series. 2081, 012022 (2021). https://doi.org/10.1088/1742-6596/2081/1/012022

  30. S.G. Samko, A.A. Kilbas, O.I. Marichev, Integrals and Derivatives of Fractional Order and Applications (Nauka i Tehnika, Minsk, 1987)

    MATH  Google Scholar 

  31. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, New York, 1993)

    MATH  Google Scholar 

  32. V. Kiryakova, Generalized Fractional Calculus and Applications (Longman and J. Wiley, New York, 1994), p.360

    MATH  Google Scholar 

  33. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1998), p.340

    MATH  Google Scholar 

  34. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  35. F. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer-Verlag, Berlin, 2010). https://doi.org/10.1007/978-3-642-14574-2

    Book  MATH  Google Scholar 

  36. A. Kochubei, Yu. Luchko (eds.), Handbook of Fractional Calculus with Applications, Basic Theory, vol. 1. (Walter de Gruyter GmbH, Berlin, 2019). https://doi.org/10.1515/9783110571622

    Book  Google Scholar 

  37. A. Kochubei, Yu. Luchko (eds.), Handbook of Fractional Calculus with Applications, Fractional Differential Equations, vol. 2. (Walter de Gruyter GmbH, Berlin, 2019), p.519. https://doi.org/10.1515/9783110571660

    Book  Google Scholar 

  38. V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2010). https://doi.org/10.1007/978-3-642-14003-7

    Book  MATH  Google Scholar 

  39. J. Klafter, S.C. Lim, R. Metzler (eds.), Fractional Dynamics Recent Advances. (World Scientific, Singapore, 2011)

    Google Scholar 

  40. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. (World Scientific, Singapore, 2010). https://doi.org/10.1142/p614

    Book  MATH  Google Scholar 

  41. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers Vol. 1 Background and Theory. Vol 2. Application. (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-33911-0

    Book  MATH  Google Scholar 

  42. V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Scientific, Singapore, 2013). https://doi.org/10.1142/8185

    Book  MATH  Google Scholar 

  43. T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (Wiley-ISTE, London, 2014). https://doi.org/10.1002/9781118577530

    Book  MATH  Google Scholar 

  44. T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley-ISTE, London, 2014)

    Book  MATH  Google Scholar 

  45. Yu. Povstenko, Fractional Thermoelasticity (Springer International Publishing, Cham, 2015). https://doi.org/10.1007/978-3-319-15335-3

    Book  MATH  Google Scholar 

  46. J.A. Tenreiro Machado (ed.), Handbook of Fractional Calculus with Applications Application in Physics. Part A. (Walter de Gruyter GmbH, Berlin, 2019). https://doi.org/10.1515/9783110571707

    Book  MATH  Google Scholar 

  47. V.E. Tarasov, Handbook of Fractional Calculus with Applications, Series Editor J.A. Tenreiro Machado, Application in Physics. Part B, vol. 5. (Walter de Gruyter GmbH, Berlin, 2019), p.319. https://doi.org/10.1515/9783110571721

  48. M. Riesz, L’intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81(1), 1–222 (1949). https://doi.org/10.1007/BF02395016. (in French)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Prado, M. Rivero, J.J. Trujillo, M.P. Velasco, New results from old investigation: a note on fractional \(m\)-dimensional differential operators. The fractional Laplacian. Fract. Calc. Appl. Anal. 18(2), 290–306 (2015). https://doi.org/10.1515/fca-2015-0020

    Article  MathSciNet  MATH  Google Scholar 

  50. S.I. Muslih, O.P. Agrawal, Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49(2), 270–275 (2010). https://doi.org/10.1007/s10773-009-0200-1

    Article  MathSciNet  MATH  Google Scholar 

  51. V.E. Tarasov, Exact discretization of fractional Laplacian. Comput. Math. Appl. 73(5), 855–863 (2017). https://doi.org/10.1016/j.camwa.2017.01.012

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Moon, D.E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions, 2nd edn. (Springer-Verla, London, 1988). https://doi.org/10.1007/978-3-642-83243-7

    Book  MATH  Google Scholar 

  53. A. Galbis, M. Maestre, Vector Analysis versus Vector Calculus (Springer-Verlag, New York, 2012). https://doi.org/10.1007/978-1-4614-2200-6

    Book  MATH  Google Scholar 

  54. V.E. Tarasov, Fractional vector calculus and fractional equations. Ann. Phys. 323(11), 2756–2778 (2008). https://doi.org/10.1016/j.aoP.2008.04.005. arXiv:0907.2363

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. O.M. Agrawal, Y. Xu, Generalized vector calculus on convex domain. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 129–140 (2015). https://doi.org/10.1016/j.cnsns.2014.10.032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. T. Odzijewicz, A. Malinowska, D. Torres, Green’s theorem for generalized fractional derivatives. Fract. Calc. Appl. Anal. 16(1), 64–75 (2013). https://doi.org/10.2478/s13540-013-0005-z. arXiv:1205.4851

    Article  MathSciNet  MATH  Google Scholar 

  57. Sonin, Nikolai Yakovlevich Math-Net.Ru 2022. URL: http://www.mathnet.ru/eng/person40324

  58. N. Sonine, On the generalization of an Abel formula. (Sur la generalisation d’une formule d’Abel). Acta Math. 4, 171–176 (1884). https://doi.org/10.1007/BF02418416. (in French)

    Article  MathSciNet  MATH  Google Scholar 

  59. N.Y. Sonin, On the generalization of an Abel formula, in Investigations of Cylinder Functions and Special Polynomials. ed. by N.Y. Sonin (GTTI, Moscow, 1954), pp.148–154. (in Russian)

    Google Scholar 

  60. A.N. Kochubei, General fractional calculus, evolution equations and renewal processes. Integr. Eqn. Oper. Theory 71(4), 583–600 (2011). https://doi.org/10.1007/s00020-011-1918-8

    Article  MathSciNet  MATH  Google Scholar 

  61. A.N. Kochubei, General fractional calculus, Chapter 5. in Handbook of Fractional Calculus with Applications eds. by A. Kochubei, Yu. Luchko, vol. 1. Series edited by J.A. Tenreiro Machado Basic Theory. (De Gruyter, Berlin, 2019), pp.111–126. https://doi.org/10.1515/9783110571622-005

  62. A.N. Kochubei, Equations with general fractional time derivatives. Cauchy problem, Chapter 11. in Handbook of Fractional Calculus with Applications. vol 2. Series edited by J.A. Tenreiro Machado Fractional Differential Equations. (De Gruyter, Berlin, 2019), pp.223–234. https://doi.org/10.1515/97831105716620-011

  63. S.G. Samko, R.P. Cardoso, Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003(57), 3609–3632 (2003). https://doi.org/10.1155/S0161171203211455

    Article  MathSciNet  MATH  Google Scholar 

  64. S.G. Samko, R.P. Cardoso, Sonine integral equations of the first kind in \(L_p(0; b)\). Fract. Calc. Appl. Anal. 6(3), 235–258 (2003)

    MathSciNet  MATH  Google Scholar 

  65. Yu. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19(3), 675–695 (2016). https://doi.org/10.1515/fca-2016-0036

    Article  MathSciNet  MATH  Google Scholar 

  66. Yu. Luchko, M. Yamamoto, The general fractional derivative and related fractional differential equations. Mathematics 8(12), 2115 (2020). https://doi.org/10.3390/math8122115

    Article  Google Scholar 

  67. A.N. Kochubei, Y. Kondratiev, Fractional kinetic hierarchies and intermittency. Kinetic and related models. Am. Inst. Math. Sci. 10(3), 725–740 (2017). https://doi.org/10.3934/krm.2017029

    Article  MATH  Google Scholar 

  68. A.N. Kochubei, Y. Kondratiev, Growth equation of the general fractional calculus. Mathematics 7(7), 615 (2019). https://doi.org/10.3390/math7070615

    Article  Google Scholar 

  69. Ch.-S. Sin, Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 21(3), 819–832 (2018). https://doi.org/10.1515/fca-2018-0043

    Article  MathSciNet  MATH  Google Scholar 

  70. N. Kinash, J. Janno, Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 24(2), 236–262 (2019). https://doi.org/10.3846/mma.2019.016

    Article  MathSciNet  MATH  Google Scholar 

  71. N. Kinash, J. Janno, An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space- dependent sources in fractional diffusion and wave equations. Mathematics 7(12), 1138 (2019). https://doi.org/10.3390/math7121138

    Article  Google Scholar 

  72. A. Hanyga, A comment on a controversial issue: a generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 23(1), 211–223 (2020). https://doi.org/10.1515/fca-2020-0008

  73. A. Giusti, General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 83, 105114 (2020). https://doi.org/10.1016/j.cnsns.2019.105114

    Article  MathSciNet  MATH  Google Scholar 

  74. Yu. Luchko, General fractional integrals and derivatives with the Sonine kernels. Mathematics 9(6), 594 (2021). https://doi.org/10.3390/math9060594

    Article  Google Scholar 

  75. Yu. Luchko, General fractional integrals and derivatives of arbitrary order. Symmetry 13(5), 755 (2021). https://doi.org/10.3390/sym13050755

    Article  ADS  Google Scholar 

  76. Yu. Luchko, Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 24(2), 338–375 (2021). https://doi.org/10.1515/fca-2021-0016

    Article  MathSciNet  MATH  Google Scholar 

  77. Yu. Luchko, Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 9(17), 2132 (2021). https://doi.org/10.3390/math9172132

    Article  Google Scholar 

  78. Yu. Luchko, Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 25(1), 207–228 (2022). https://doi.org/10.1007/s13540-021-00009-9

    Article  MathSciNet  Google Scholar 

  79. Yu. Luchko, Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 10(6), 849 (2022). https://doi.org/10.3390/math10060849

    Article  Google Scholar 

  80. Yu. Luchko, The 1st level general fractional derivatives and some of their properties. J. Math. Sci. (2022). https://doi.org/10.1007/s10958-022-06055-9

    Article  Google Scholar 

  81. V.E. Tarasov, General fractional calculus: Multi-kernel approach. Mathematics 9(13), 1501 (2021). https://doi.org/10.3390/math9131501

    Article  Google Scholar 

  82. V.E. Tarasov, General fractional vector calculus. Mathematics 9(21), 87 (2021). https://doi.org/10.3390/math9212816

    Article  Google Scholar 

  83. V.E. Tarasov, General fractional vector calculus. Mathematics 9(13), 1464 (2021). https://doi.org/10.3390/math9131464

    Article  Google Scholar 

  84. V.E. Tarasov, General non-Markovian quantum dynamics. Entropy 23(8), 1006 (2021). https://doi.org/10.3390/e23081006

    Article  ADS  MathSciNet  Google Scholar 

  85. V.E. Tarasov, General non-local continuum mechanics: derivation of balance equations. Mathematics 10(9), 1427 (2022). https://doi.org/10.3390/math10091427

    Article  Google Scholar 

  86. V.E. Tarasov, General non-local electrodynamics: equations and non-local effects. Ann. Phys. 445, 169082 (2022). https://doi.org/10.1016/j.aoP.2022.169082

    Article  MathSciNet  MATH  Google Scholar 

  87. V.E. Tarasov, Nonlocal probability theory: general fractional calculus approach. Mathematics 10(20), 3848 (2022). https://doi.org/10.3390/math10203848

    Article  Google Scholar 

  88. M. Al-Kandari, L.A.M. Hanna, Yu. Luchko, Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 10(9), 1590 (2022). https://doi.org/10.3390/math10091590

    Article  Google Scholar 

  89. M. Al-Refai, Yu. Luchko, Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ. 319, 312–324 (2022). https://doi.org/10.1016/j.jde.2022.02.054

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. K. Diethelm, R. Garrappa, A. Giusti, M. Stynes, Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 23(3), 610–634 (2020). https://doi.org/10.1515/fca-2020-0032

    Article  MathSciNet  MATH  Google Scholar 

  91. V.E. Tarasov, Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A: Stat. Mech. Appl. 609, 128366 (2023). https://doi.org/10.1016/j.physa.2022.128366

    Article  Google Scholar 

  92. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Elementary Functions, vol. 1. (Taylor and Francis, London, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.E. Nonlocal classical theory of gravity: massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus 137, 1336 (2022). https://doi.org/10.1140/epjp/s13360-022-03512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03512-x

Navigation