Skip to main content
Log in

Modified scaling in k-essence model in interacting dark energy–dark matter scenario

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It has been shown by Scherrer (Phys Rev Lett 93:011301, 2004. https://doi.org/10.1103/PhysRevLett.93.011301. arXiv:astro-ph/0402316 [astro-ph]) and de Putter and Linder (Astropart Phys 28:263–272, 2007. https://doi.org/10.1016/j.astropartphys.2007.05.011. arXiv:0705.0400 [astro-ph]) that, when dynamics of dark energy is driven by a homogeneous k-essence scalar field \(\phi\), with a Lagrangian of the form \(L = V_0F(X)\) with a constant potential \(V_0\) and \(X = \frac{{1}}{{2}}\nabla ^\mu \phi \nabla _\mu \phi = \frac{{1}}{{2}}{\dot{\phi }}^2\), one obtains a scaling relation \(X(\mathrm{d}F/\mathrm{d}X)^2 = Ca^{-6}\) , where C is a constant and a is the FRW scale factor of the universe. The separate energy conservation in the dark energy sector and the constancy of k-essence potential are instrumental in obtaining such a scaling. In this paper, we have shown that, even when considering time-dependent interactions between dark energy and dark matter, the constancy of k-essence potential may lead to a modified form of scaling. We have obtained such a scaling relation for a particular class of parametrisation of the source term occurring in the continuity equation of dark energy and dark matter in the interacting scenario. We used inputs from the JLA analysis of luminosity distance and redshift data from Supernova Ia observations, to obtain the modified form of the scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data were associated in the manuscript.

References

  1. A.G. Riess et al. [Supernova Search Team], Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499. arXiv:astro-ph/9805201 [astro-ph]

  2. S. Perlmutter et al. [Supernova Cosmology Project], Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221. arXiv:astro-ph/9812133 [astro-ph]

  3. A.G. Riess, L.G. Strolger, S. Casertano, H.C. Ferguson, B. Mobasher, B. Gold, P.J. Challis, A.V. Filippenko, S. Jha, W. Li et al., Astrophys. J. 659, 98–121 (2007). https://doi.org/10.1086/510378. arXiv:astro-ph/0611572 [astro-ph]

    Article  ADS  Google Scholar 

  4. D.J. Eisenstein et al. [SDSS], Astrophys. J. 633, 560–574 (2005). https://doi.org/10.1086/466512. arXiv:astro-ph/0501171 [astro-ph]

  5. W.J. Percival, R.C. Nichol, D.J. Eisenstein, D.H. Weinberg, M. Fukugita, A.C. Pope, D.P. Schneider, A.S. Szalay, M.S. Vogeley, I. Zehavi et al., Astrophys. J. 657, 51–55 (2007). https://doi.org/10.1086/510772. arXiv:astro-ph/0608635 [astro-ph]

    Article  ADS  Google Scholar 

  6. E. Gawiser, J. Silk, Phys. Rep. 333, 245–267 (2000). https://doi.org/10.1016/S0370-1573(00)00025-9. arXiv:astro-ph/0002044 [astro-ph]

    Article  ADS  Google Scholar 

  7. A.G. Riess et al., Astrophys. J. 699, 539 (2009). arXiv:0905.0695 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. Y. Sofue, V. Rubin, Ann. Rev. Astron. Astrophys. 39, 137–174 (2001). https://doi.org/10.1146/annurev.astro.39.1.137. arXiv:astro-ph/0010594 [astro-ph]

    Article  ADS  Google Scholar 

  9. M. Bartelmann, P. Schneider, Phys. Rep. 340, 291–472 (2001). https://doi.org/10.1016/S0370-1573(00)00082-X. arXiv:astro-ph/9912508 [astro-ph]

    Article  ADS  Google Scholar 

  10. G. Hinshaw et al. [WMAP], Astrophys. J. Suppl. 180, 225–245 (2009). https://doi.org/10.1088/0067-0049/180/2/225. arXiv:0803.0732 [astro-ph]

  11. P.A.R. Ade et al. [Planck], Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591. arXiv:1303.5076 [astro-ph.CO]

  12. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896–899 (1999). https://doi.org/10.1103/PhysRevLett.82.896. arXiv:astro-ph/9807002 [astro-ph]

    Article  ADS  Google Scholar 

  13. J. Martin, C. R. Phys. 13, 566–665 (2012). https://doi.org/10.1016/j.crhy.2012.04.008. arXiv:1205.3365 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. S. Capozziello, Int. J. Mod. Phys. D11, 483 (2002)

    Article  ADS  Google Scholar 

  15. S. Capozziello, V.F. Cardone, S. Carloni, A. Troisi, Int. J. Mod. Phys. D12, 1969 (2003)

    Article  ADS  Google Scholar 

  16. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D70, 043528 (2004)

    ADS  Google Scholar 

  17. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  18. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. R.D. Peccei, J. Sola, C. Wetterich, Phys. Lett. B 195, 183–190 (1987). https://doi.org/10.1016/0370-2693(87)91191-9

    Article  ADS  Google Scholar 

  21. L.H. Ford, Phys. Rev. D 35, 2339 (1987). https://doi.org/10.1103/PhysRevD.35.2339

    Article  ADS  Google Scholar 

  22. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559–606 (2003). https://doi.org/10.1103/RevModPhys.75.559. arXiv:astro-ph/0207347 [astro-ph]

    Article  ADS  Google Scholar 

  23. T. Nishioka, Y. Fujii, Phys. Rev. D 45, 2140–2143 (1992). https://doi.org/10.1103/PhysRevD.45.2140

    Article  ADS  Google Scholar 

  24. P.G. Ferreira, M. Joyce, Phys. Rev. Lett. 79, 4740–4743 (1997). https://doi.org/10.1103/PhysRevLett.79.4740. arXiv:astro-ph/9707286 [astro-ph]

    Article  ADS  Google Scholar 

  25. P.G. Ferreira, M. Joyce, Phys. Rev. D 58, 023503 (1998). https://doi.org/10.1103/PhysRevD.58.023503. arXiv:astro-ph/9711102 [astro-ph]

    Article  ADS  Google Scholar 

  26. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582–1585 (1998). https://doi.org/10.1103/PhysRevLett.80.1582. arXiv:astro-ph/9708069 [astro-ph]

    Article  ADS  Google Scholar 

  27. S.M. Carroll, Phys. Rev. Lett. 81, 3067–3070 (1998). https://doi.org/10.1103/PhysRevLett.81.3067. arXiv:astro-ph/9806099 [astro-ph]

    Article  ADS  Google Scholar 

  28. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686–4690 (1998). https://doi.org/10.1103/PhysRevD.57.4686. arXiv:gr-qc/9711068 [gr-qc]

    Article  ADS  Google Scholar 

  29. W. Fang, H. Tu, Y. Li, J. Huang, C. Shu, Phys. Rev. D 89(12), 123514 (2014). https://doi.org/10.1103/PhysRevD.89.123514. arXiv:1406.0128 [gr-qc]

    Article  ADS  Google Scholar 

  30. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209–218 (1999). https://doi.org/10.1016/S0370-2693(99)00603-6. arXiv:hep-th/9904075 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001). https://doi.org/10.1103/PhysRevD.63.103510. arXiv:astro-ph/0006373 [astro-ph]

    Article  ADS  Google Scholar 

  32. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438–4441 (2000). https://doi.org/10.1103/PhysRevLett.85.4438. arXiv:astro-ph/0004134 [astro-ph]

    Article  ADS  Google Scholar 

  33. C. Armendariz-Picon, E.A. Lim, JCAP 08, 007 (2005). https://doi.org/10.1088/1475-7516/2005/08/007. arXiv:astro-ph/0505207 [astro-ph]

    Article  ADS  Google Scholar 

  34. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511. arXiv:astro-ph/9912463 [astro-ph]

    Article  ADS  Google Scholar 

  35. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, JHEP 05, 074 (2004). https://doi.org/10.1088/1126-6708/2004/05/074. arXiv:hep-th/0312099 [hep-th]

    Article  ADS  Google Scholar 

  36. R.R. Caldwell, Phys. Lett. B 545, 23–29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3. arXiv:astro-ph/9908168 [astro-ph]

    Article  ADS  Google Scholar 

  37. M. Szydlowski, A. Stachowski, Phys. Rev. D 94(4), 043521 (2016). https://doi.org/10.1103/PhysRevD.94.043521

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Calogero, JCAP 1111, 016 (2011)

    Article  ADS  Google Scholar 

  39. S. Calogero, J. Geom. Phys. 62, 22082213 (2012)

    Article  Google Scholar 

  40. S. Calogero, H. Velten, JCAP 1311, 025 (2013)

    Article  ADS  Google Scholar 

  41. Z. Haba, A. Stachowski, M. Szydłowski, JCAP 1607(07), 024 (2016)

    Article  ADS  Google Scholar 

  42. D. Bertacca, S. Matarrese, M. Pietroni, Mod. Phys. Lett. A 22, 2893 (2007)

    Article  ADS  Google Scholar 

  43. D. Bertacca, N. Bartolo, S. Matarrese, Adv. Astron. 2010, 904379 (2010)

    Article  ADS  Google Scholar 

  44. A. Bandyopadhyay, A. Chatterjee, Mod. Phys. Lett. A 34(27), 1950219 (2019). https://doi.org/10.1142/S0217732319502195. arXiv:1709.04334 [gr-qc]

    Article  ADS  Google Scholar 

  45. A. Bandyopadhyay, A. Chatterjee, Eur. Phys. J. Plus 134(4), 174 (2019). https://doi.org/10.1140/epjp/i2019-12587-0. arXiv:1808.05259 [gr-qc]

    Article  Google Scholar 

  46. A. Bandyopadhyay, A. Chatterjee, Res. Astron. Astrophys. 21(1), 002 (2021). https://doi.org/10.1088/1674-4527/21/1/2. arXiv:1910.10423 [gr-qc]

    Article  ADS  Google Scholar 

  47. R.J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004). https://doi.org/10.1103/PhysRevLett.93.011301. arXiv:astro-ph/0402316 [astro-ph]

    Article  ADS  Google Scholar 

  48. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219–225 (1999). https://doi.org/10.1016/S0370-2693(99)00602-4. arXiv:hep-th/9904176 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438–4441 (2000). https://doi.org/10.1103/PhysRevLett.85.4438. arXiv:astro-ph/0004134 [astro-ph]

    Article  ADS  Google Scholar 

  50. L.P. Chimento, A. Feinstein, Mod. Phys. Lett. A 19, 761–768 (2004). https://doi.org/10.1142/S0217732304013507. arXiv:astro-ph/0305007 [astro-ph]

    Article  ADS  Google Scholar 

  51. L.P. Chimento, Phys. Rev. D69, 123517 (2004). https://doi.org/10.1103/PhysRev.D69.123517. arXiv:astro-ph/0311613 [astro-ph]

    Article  ADS  Google Scholar 

  52. R. de Putter, E.V. Linder, Astropart. Phys. 28, 263–272 (2007). https://doi.org/10.1016/j.astropartphys.2007.05.011. arXiv:0705.0400 [astro-ph]

    Article  ADS  Google Scholar 

  53. M. Hicken et al., ApJ 700, 331 (2009)

    Article  ADS  Google Scholar 

  54. C. Contreras et al., AJ 139, 519 (2010)

    Article  ADS  Google Scholar 

  55. G. Folatelli et al., AJ 139, 120 (2010)

    Article  ADS  Google Scholar 

  56. M.D. Stritzinger et al., AJ 142, 156 (2011)

    Article  ADS  Google Scholar 

  57. M. Ganeshalingam et al., MNRAS 433, 2240 (2013)

    Article  ADS  Google Scholar 

  58. G. Aldering, G. Adam, P. Antilogus, P. Astier, R. Bacon, S. Bongard, C. Bonnaud, Y. Copin, D. Hardin, F. Henault, D. Andrew Howell, J-P. Lemonnier, J-M. Levy, S.C. Loken, P.E. Nugent, R. Pain, A. Pecontal, E. Pecontal, S. Perlmutter, R.M. Quimby, K. Schahmaneche, G. Smadja, W. Michael Wood-Vasey, Survey and Other Telescope Technologies and Discoveries, Proceedings Vol. 4836 (2002). https://doi.org/10.1117/12.458107

  59. J.A. Frieman et al., AJ 135, 338 (2008)

    Article  ADS  Google Scholar 

  60. R. Kessler et al., ApJS 185, 32 (2009)

    Article  ADS  Google Scholar 

  61. J. Sollerman et al., ApJ 703, 1374 (2009)

    Article  ADS  Google Scholar 

  62. H. Lampeitl et al., MNRAS 401, 2331 (2010)

    Article  ADS  Google Scholar 

  63. H. Campbell et al., ApJ 763, 88 (2013)

    Article  ADS  Google Scholar 

  64. P. Astier et al., A & A 447, 31 (2006)

    Article  ADS  Google Scholar 

  65. M. Sullivan et al., ApJ 737, 102 (2011)

    Article  ADS  Google Scholar 

  66. W.M. Wood-Vasey et al., ApJ 666, 694 (2007)

    Article  ADS  Google Scholar 

  67. J.L. Tonry et al., ApJ 750, 99 (2012)

    Article  ADS  Google Scholar 

  68. D. Scolnic et al., ApJ (submitted). arXiv:1310.3824

  69. A. Rest et al., ApJ (submitted). arXiv:1310.3824

  70. A. Conley et al., ApJS 192, 1 (2011)

    Article  ADS  Google Scholar 

  71. N. Suzuki et al., ApJ 746, 85 (2012)

    Article  ADS  Google Scholar 

  72. A.G. Riess et al., ApJ 659, 98 (2007)

    Article  ADS  Google Scholar 

  73. M. Betoule, R. Kessler, J. Guy et al., Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  74. S. Wang, S. Wen, M. Li, JCAP 1703(03), 037 (2017)

    Article  ADS  Google Scholar 

  75. S. Wang, Y. Wang, Phys. Rev. D 88, 043511 (2013)

    Article  ADS  Google Scholar 

  76. M. Born, L. Infeld, Proc. R. Soc. Lond. A144, 425 (1934)

    ADS  Google Scholar 

  77. W. Heisenberg, Zeitschrift fur Physik A, Hadrons and Nuclei 113(1-2)

  78. P.A.M. Dirac, R. Soc. Lond. Proc. Ser. A 268, 57 (1962)

    ADS  Google Scholar 

  79. G.W. Gibbons, Nucl. Phys. B514, 603 (1998)

    Article  ADS  Google Scholar 

  80. G.W. Gibbons, Rev.Mex.Fis. 49S1, 19 (2003)

    Google Scholar 

  81. A. Sen, JHEP 04, 048 (2002)

    Article  ADS  Google Scholar 

  82. A. Sen, JHEP 07, 065 (2002)

    Article  ADS  Google Scholar 

  83. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D15, 1753 (2006)

    Article  ADS  Google Scholar 

  84. M. Gasperini, G. Veneziano, Phys. Rep. 373, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  85. Ki. Maeda, Phys. Rev. D39, 3159 (1989)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the honourable referee for valuable suggestions. A.C. would like to thank Indian Institute of Technology, Kanpur, for supporting this work by means of Institute Post-Doctoral Fellowship (Ref.No.DF/PDF197/2020-IITK/970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Chatterjee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Jana, B. & Bandyopadhyay, A. Modified scaling in k-essence model in interacting dark energy–dark matter scenario. Eur. Phys. J. Plus 137, 1271 (2022). https://doi.org/10.1140/epjp/s13360-022-03476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03476-y

Navigation