Skip to main content
Log in

Chemically reactive magnetohydrodynamic mixed convective nanofluid flow inside a square porous enclosure with viscous dissipation and Ohmic heating

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The characteristics of the mixed convection nanofluid flow inside a square enclosure saturated with porous medium are numerically investigated. The present analysis incorporates the impact of chemical reaction, Joule heating (Ohmic heating), magnetic field, and viscous dissipation. The horizontal walls of the cavity are considered as adiabatic walls. The right and left walls of the cavity are considered as cold and hot walls, respectively. The Buongiorno mathematical model is adopted to characterize the nanoliquid, and the impact of thermophoresis and Brownian motion is accounted in the present model. The equations in the non-dimensional form are solved by using the Marker-And-Cell (MAC) technique, and the outcomes are illustrated graphically. The results conclude that the magnitude of the streamline profiles decreases as the Hartmann number rises. The free convection is more dominant than forced and mixed convections. The growing values of chemical reaction parameter slightly increase the fluid flow and having a significant change in the mass transfer profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

The data will be made available on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Abbreviations

xy :

Dimensional Cartesian coordinates (m)

uv :

Dimensional velocity components in \(x,\;y\) directions \(\left( {\mathrm{{m}}\,{\mathrm{{s}}^{\mathrm{{ - 1}}}}} \right)\)

g :

Acceleration due to gravity \((\text{m}\,\,\text{s}^{-2})\)

L :

Length of the enclosure (m)

K :

Permeability of the porous medium \((\text{m}^{2})\)

\(B_0\) :

Magnetic field’s strength \((\text{kg}\,\,\text{s}^{-2}\,\,\text{A}^{-1})\)

\(D_{\text {T}}\) :

Thermophoresis diffusion coefficient \((\text{m}^{2}\,\text{s}^{-1})\)

p :

Dimensional pressure (Pa)

\(U_0\) :

Constant reference velocity \(\left( {\text{m}\,{\text{s}^{{{ - 1}}}}} \right)\)

\(D_{\text {B}}\) :

Brownian diffusion coefficient \((\text{m}^{2}\,\text{s}^{-1})\)

\(C_{\text {h}}\) :

High concentration \((\text{kg}\,\text{m}^{-3})\)

\(C_{\text {c}}\) :

Low concentration \((\text{kg}\,\text{m}^{-3})\)

C :

Dimensional concentration of the fluid \((\text{kg}\,\text{m}^{-3})\)

UV :

Dimensionless velocities along X and Y directions (–)

\(T_{\text {h}}\) :

Hot wall temperature (K)

\(T_{\text {c}}\) :

Cold wall temperature (K)

\(t^*\) :

Dimensional time (s)

T :

Dimensional temperature (K)

XY :

Dimensionless Cartesian coordinate system (–)

P :

Dimensionless pressure (–)

Nu:

Nusselt number (–)

\(N_{\text {T}}\) :

Thermophoresis parameter (–)

Re:

Reynolds number (–)

Kr :

Chemical reaction parameter (–)

Pr:

Prandtl number (–)

Le:

Lewis number (–)

Ec:

Eckert number (–)

\(N_{\text {B}}\) :

Brownian motion parameter (–)

Da:

Darcy parameter (–)

Ri:

Richardson number (–)

Gr:

Grashof number (–)

Ha:

Hartmann number (–)

Nr :

Buoyancy ratio parameter (–)

R :

Dimensional chemical reaction parameter (–)

\(\mu _{\text {f}}\) :

Dynamic viscosity of the fluid \((\text{kg}\,\text{m}^{-3} \text{s}^{-1})\)

\(\rho _{\text {f}}\) :

Fluid density \((\text{kg}\,\text{m}^{-3})\)

\(\rho _{\text {p}}\) :

Density of the nanoparticle \((\text{kg}\,\text{m}^{-3})\)

\(\sigma _{\text {f}}\) :

Electrical conductivity \((\text{S}\,\text{m}^{-1})\)

\(\beta _{\text {f}}\) :

Thermal diffusivity of the fluid \((\text{K}^{-1})\)

\(\nu _{\text {f}}\) :

Kinematic viscosity of the fluid \((\text{m}^{2}\text{s}^{-1})\)

\(\alpha _{\text {f}}\) :

Thermal diffusivity of the fluid \((\text{m}^{2}\text{s}^{-1})\)

\(\theta\) :

Dimensionless temperature (–)

\(\phi\) :

Dimensionless concentration (–)

References

  1. S.U. Choi, Eastmann, J.A, Argonne National Lab., IL (United States), (1995)

  2. K. Khanafer, K. Vafai, Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)

    Article  Google Scholar 

  3. A.S. Dogonchi, M.A. Ismal, A.J. Chamkha, D.D. Ganji, J. Therm. Anal. Calorim. 135(6), 3485–3497 (2019)

    Article  Google Scholar 

  4. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, Eur. Phys. J. Spec. Top. 228(12), 2531–2551 (2019)

    Article  Google Scholar 

  5. R. Sivaraj, S. Banerjee, Eur. Phys. J. Spec. Top. 230(5), 1167–1171 (2012)

    Article  Google Scholar 

  6. P. Sreedevi, P.S. Reddy, Alex. Eng. J. 61(2), 1529–1541 (2022)

    Article  Google Scholar 

  7. S. Xia, M. Mostafavi, T. Alghazali, J.W.G. Guerrero, W. Suksatan, D. Toghraie, A. Khan, Alex. Eng. J. 61(9), 7393–7415 (2022)

    Article  Google Scholar 

  8. M.J. Uddin, S.K. Rasel, J.K. Adewole, K.S. Al Kalbani, Results Eng. 13, 100364 (2022)

    Article  Google Scholar 

  9. K. Thirumalaisamy, R. Sivaraj, V. Ramachandra Prasad, O. A. Bég, H. H. Leung, F. Kamalov, K. Vajravelu, Phys. Fluids 34(7), 072001 (2022)

    Article  ADS  Google Scholar 

  10. O. Manca, S. Nardini, K. Khanafer, K. Vafai, Numer. Heat Transf. A: Appl. 43(2), 259–282 (2003)

    Article  ADS  Google Scholar 

  11. M.A. Ismael, I. Pop, A.J. Chamkha, Int. J. Therm. Sci. 82, 47–61 (2014)

    Article  Google Scholar 

  12. K. Mehmood, S. Hussain, M. Sagheer, Int. J. Heat Mass Transf. 109, 397–409 (2017)

    Article  Google Scholar 

  13. B.M.D.H. Khan, V.R. Prasad, R.B. Vijaya, Nonlin. Eng. 7(4), 253–261 (2018)

    Article  Google Scholar 

  14. S. Gupta, A. Chauhan, C. Sasmal, Int. J. Heat Mass Transf. 186, 122469 (2022)

    Article  Google Scholar 

  15. N. Alsedais, A.M. Aly, M.A. Mansour, Ain Shams Eng. J. 13(2), 101562 (2022)

    Article  Google Scholar 

  16. G. Kumaran, R. Sivaraj, V.R. Prasad, O.A. Beg, R.P. Sharma, Phys. Scr. 96(2), 025222 (2020)

    Article  ADS  Google Scholar 

  17. A.K. Al-Hadhrami, L. Elliott, D.B. Indham, Transp. Porous Media. 53(1), 117–122 (2003)

    Article  MathSciNet  Google Scholar 

  18. N.H. Saeid, I. Pop, Int. Commun. Heat Mass Transf. 31(5), 723–732 (2004)

    Article  Google Scholar 

  19. I.A. Badruddin, Z.A. Zainal, P.A. Narayana, K.N. Seetharamu, Int. Commun. Heat Mass Transf. 33(4), 491–499 (2006)

    Article  Google Scholar 

  20. O.D. Makinde, W.A. Khan, J.R. Culham, Int. J. Heat Mass Transf. 93, 595–604 (2016)

    Article  Google Scholar 

  21. M. Ghalambaz, M. Sabour, I. Pop, Eng. Sci. Technol. an Int. J. 19(3), 1244–1253 (2016)

    Article  Google Scholar 

  22. I. Pop, M. Sheremet, Int. J. Numer. Methods Heat Fluid Flow. 27(10), 2318–2332 (2017)

    Article  Google Scholar 

  23. L. Kolsi, S. Hussain, K. Ghachem, M. Jamal, C. Maatki, Mathematics 10(7), 1060 (2022)

    Article  Google Scholar 

  24. V.M. Job, S.R. Gunakala, Numer. Heat Transf. A: Appl. 69(4), 421–443 (2016)

    Article  ADS  Google Scholar 

  25. S.E. Ahmed, H.F. Oztop, K. Al-Salem, Int. J. Numer. Methods Heat Fluid Flow., (2016)

  26. A.J. Benazir, R. Sivaraj, M.M. Rashidi, J. Heat Transfer. 138, 11 (2016)

    Google Scholar 

  27. M.A. Mansour, S.E. Ahmed, A.J. Chamkha, Int. J. Numer. Meth. Heat Fluid Flow. 138, 379–399 (2017)

    Article  Google Scholar 

  28. E.S. Reddy, S. Panda, J. Natl. Sci. Found. Sri Lanka, 48(1), (2020)

  29. A. Chauhan, P.M. Sahu, C. Sasmal, Int. J. Heat Mass Transf. 175, 121342 (2021)

    Article  Google Scholar 

  30. J. Buongiorno, Convect. Transp. Nanofl. 128(3), 240–250 (2006)

    Google Scholar 

  31. M.A. Sheremet, T. Grosan, I. Pop, Eur. J. Mech. B Fluids 53, 241–250 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. H.M. Elshehabey, S.E. Ahmed, Int. Commun. Heat Mass Transf. 88, 181–202 (2015)

    Article  Google Scholar 

  33. H. Zargartalebi, M. Ghalambaz, A. Noghrehabadi, A.J. Chamkha, Numer. Heat Transf. A: Appl. 70(4), 432–445 (2016)

    Article  ADS  Google Scholar 

  34. S.P. Goqo, H. Mondal, P. Sibanda, S.S. Motsa, Case Stud. Therm. Eng. 14, 100415 (2019)

    Article  Google Scholar 

  35. G. Kumaran, R. Sivaraj, A. Subramanyam Reddy, B. Rushi Kumar, V. Ramachandra Prasad, Eur. Phys. J. Spec. Top. 228(12), 2647–2659 (2019)

    Article  Google Scholar 

  36. B. Chandra Shekar, C. Haritha, N. Kishan, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 233(3), 474–488 (2019)

    Article  Google Scholar 

  37. R. Sivaraj, B.R. Kumar, Ain Shams Eng. J. 4(1), 93–101 (2013)

    Article  Google Scholar 

  38. R. Sivaraj, B.R. Kumar, Int. Commun. Heat Mass Transf. 61, 119–128 (2013)

    Article  Google Scholar 

  39. M.A. Sheremet, T. Groşan, I. Pop, Eur. J. Mech. B/Fluids. 53, 241–250 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. de Vahl Davis, Int. J. Numer. Methods Fluids. 3(3), 249–264 (1983)

    Article  Google Scholar 

  41. C. Wan, B.S.V. Patnaik, D.G.W. Wei, Numer. Heat Transf. B: Fundam. 40(3), 199–228 (2001)

    Article  ADS  Google Scholar 

  42. T.S. Devi, C.V. Lakshmi, K. Venkatadri, V.R. Prasad, O.A. Beg, M.S. Reddy, Heat Transf. 49(4), 1769–1787 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The second author (R. Sivaraj) is thankful to the Ministry of Education, United Arab Emirates, for the financial assistance to complete this research work through the Collaborative Research Program Grant 2019 (CRPG 2019) with the Fund No. 21S107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivaraj.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumithra, A., Sivaraj, R. Chemically reactive magnetohydrodynamic mixed convective nanofluid flow inside a square porous enclosure with viscous dissipation and Ohmic heating. Eur. Phys. J. Plus 137, 1193 (2022). https://doi.org/10.1140/epjp/s13360-022-03409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03409-9

Navigation