Skip to main content
Log in

First principles study of structural, elastic, electronic, magnetic and thermoelectric properties of ZrRhYZ (Y = Hf, La; Z = Al, Ga, In) quaternary Heusler alloys

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The structural, mechanical, electronic structure, magnetic, and thermoelectric properties of ZrRhYZ (Y = Hf, La; Z = Al, Ga, In) quaternary Heusler alloys at normal pressure are studied using first-principles calculations employing density functional theory. The predicted mechanical properties of these alloys show that they are mechanically stable. At normal pressure, the electronic structure of ZrRhYZ (Y = Hf, La; Z = Al, Ga, In) quaternary Heusler alloys suggests that they are half-metallic ferromagnets. In the LiMgPdSn type crystal structure, the alloys ZrRhYZ (Y = Hf, La; Z = Al, Ga, In) have total magnetic moments of 2 μB and 1 μB, respectively, and follow the Slater–Pauling 18-electron-rule. The Seebeck coefficients, electrical conductivity, thermal conductivity, and power factor are calculated using the Boltzmann transport theory at room temperature to understand their thermoelectric properties better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The datasets generated and analysed during the current study are not publicly available due to privacy or ethical restrictions but are available from the corresponding author on reasonable request.

References

  1. Y. Kimura, Y. Tamura, T. Kita, Appl. Phys. Lett. 92, 012105 (2008). https://doi.org/10.1063/1.2828713

    Article  ADS  Google Scholar 

  2. D.P. Rai, Sandeep, A. Shankar, R. Khenata, A.H. Reshak, C.E. Ekuma, R.K. Thapa, S.-H. Ke, AIP Adv. 7, 045118 (2017). https://doi.org/10.1063/1.4982671

    Article  ADS  Google Scholar 

  3. B.A. Cook, J.L. Harringa, Z.S. Tan, W. Jesser, in Proceedings of the ICT’96 (1996), p. 122. https://doi.org/10.1109/ICT.1996.553270

  4. C. Kloc, K. Fess, W. Kaefer, K. Friemelt, H. Riazi-Nejad, M. Wendl, E. Bucher, in Proceedings of the ICT’96 (1996), p. 155. https://doi.org/10.1109/ICT.1996.553281

  5. J. Winterlik, G.H. Fecher, A. Thomas, C. Felser, Phys. Rev. B 79, 064508 (2009). https://doi.org/10.1103/PhysRevB.79.064508

    Article  ADS  Google Scholar 

  6. K.H.J. Buschow, P.G. Van Engen, J. Magn. Magn. Mater. 25(1), 90–96 (1981). https://doi.org/10.1016/0304-8853(81)90151-7

    Article  ADS  Google Scholar 

  7. L. Bainsla, K.G. Suresh, Appl. Phys. Rev. 3, 031101–031121 (2016). https://doi.org/10.1063/1.4959093

    Article  ADS  Google Scholar 

  8. E.L. Shreder, A.A. Makhnev, K.G. Suresh, M.G. Kostenko, E.D. Chernov, V.G. Ivanov, A.V. Lukoyanov, Mod. Phys. Lett. B 36(04), 2150573 (2022). https://doi.org/10.1142/S0217984921505734

    Article  ADS  Google Scholar 

  9. K. Labar, A. Shankar, M. Ram, A. Laref, R. Sharma, J. Phys. Chem. Solids 156, 110119 (2021). https://doi.org/10.1016/j.jpcs.2021.110119

    Article  Google Scholar 

  10. A.Q. Seh, D.C. Gupta, J. Alloys Compd. 871, 159560 (2021). https://doi.org/10.1016/j.jallcom.2021.159560

    Article  Google Scholar 

  11. D.M. Hoat, D.-Q. Hoang, N.T.T. Binh, M. Naseri, J.F. Rivas-Silva, A.I. Kartamyshev, G.H. Cocoletzi, Mater. Chem. Phys. 257, 123695 (2021). https://doi.org/10.1016/j.matchemphys.2020.123695

    Article  Google Scholar 

  12. S. Jianga, K. Yang, J. Alloys Compd. 867, 158854 (2021). https://doi.org/10.1016/j.jallcom.2021.158854

    Article  Google Scholar 

  13. S. Belbachir, C. Abbes, M.N. Belkaid, A.H. Belbachir, J. Supercond. Nov. Magn. 33, 2899–2905 (2020). https://doi.org/10.1007/s10948-020-05598-9

    Article  Google Scholar 

  14. S. Berri, M. Ibrir, D. Maouche, M. Attallah, Comput. Condens. Matter. 1, 26–31 (2014). https://doi.org/10.1016/j.cocom.2014.10.003

    Article  Google Scholar 

  15. X. Wang, Z. Cheng, J. Wang, L. Wang, Z. Yu, C. Fang, J. Yang, G. Liu, RSC Adv. (2016). https://doi.org/10.1039/C6RA08600D

    Article  Google Scholar 

  16. S. Berri, M. Ibrir, D. Maouche, M. Attallah, J. Magn. Magn. Mater. 371, 106–111 (2014). https://doi.org/10.1016/j.jmmm.2014.07.033

    Article  ADS  Google Scholar 

  17. Q. Gao, H.H. Xie, L. Li, G. Lei, J.-B. Deng, X.-R. Hu, Superlattices and Microstruct. 85, 536–542 (2015). https://doi.org/10.1016/j.spmi.2015.05.049

    Article  ADS  Google Scholar 

  18. S.A. Khandy, J. Chai, J. Appl. Phys. 127, 165102 (2020). https://doi.org/10.1063/1.5139072

    Article  ADS  Google Scholar 

  19. S. Idrissia, L. Bahmada, R. Khalladi, I. El Housni, N. El Mekkaoui, S. Mtougui, H. Labrim, S. Ziti, Chin. J. Phys. 60, 549–563 (2019). https://doi.org/10.1016/j.cjph.2019.05.036

    Article  Google Scholar 

  20. V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, S. Chadov, T. Gruhn, C. Felser, J. Phys. Condens. Matter. 24, 046001 (2012). https://doi.org/10.1088/0953-8984/24/4/04600

    Article  ADS  Google Scholar 

  21. M. Benkabou, H. Rached, A. Abdellaoui, D. Rached, R. Khenata, M.H. Elahmar, B. Abidri, N. Benkhettou, S. Bin-Omran, J. Alloys Compd. 647, 276–286 (2015). https://doi.org/10.1016/j.jallcom.2015.05.273

    Article  Google Scholar 

  22. X. Yang, X. Wu, B. Wu, Y. Feng, P. Li, H. Huang, Mater. Sci. Eng. B 209, 45–50 (2016). https://doi.org/10.1016/j.mseb.2015.12.008

    Article  Google Scholar 

  23. R. Guo, G. Liu, X. Wang, H. Rozale, L. Wang, R. Khenata, Z. Wu, X. Dai, RSC Adv. 6, 109394–109400 (2016). https://doi.org/10.1039/C6RA18873G

    Article  ADS  Google Scholar 

  24. H.H. Xie, Q. Gao, L. Li, G. Lei, G.Y. Mao, X.R. Hu, J.B. Deng, Comput. Matter. Sci. 103, 52–55 (2015). https://doi.org/10.1016/j.commatsci.2015.03.010

    Article  Google Scholar 

  25. W. Liu, X. Zhang, H. Jia, R. Khenata, X. Dai, G. Liu, Appl. Sci. 9, 883 (2019). https://doi.org/10.3390/app9050883

    Article  Google Scholar 

  26. S. Singh, D.C. Gupta, Results Phys. 13, 102300 (2019). https://doi.org/10.1016/j.rinp.2019.102300

    Article  Google Scholar 

  27. X. Wang, Z. Cheng, R. Guo, J. Wang, H. Rozale, L. Wang, Z. Yu, G. Liu, Mater. Chem. Phys. 193, 99–108 (2017). https://doi.org/10.1016/j.matchemphys.2017.02.019

    Article  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, et al. WIEN2k : An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Austria (2001) (ISBN 39501031-1-2)

  29. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  ADS  Google Scholar 

  30. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.48.4978.2

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  32. U. Von Barth, L. Hedin, J. Phys. C Solid State Phys. 5(13), 1629–1642 (1972)

    Article  ADS  Google Scholar 

  33. M. Jamal, Cubic-elastic (2012) http://www.WIEN2k.at/reg_user/unsupported/cubic-elast/

  34. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  Google Scholar 

  36. M. Born, K. Huang, Dynamical Theory and Experiment, I. Springer, Berlin (1982)

  37. S.F. Pugh, Philos. Mag. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  38. R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science 282, 85–88 (1998). https://doi.org/10.1126/SCIENCE.282.5386.85

    Article  ADS  Google Scholar 

  39. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  ADS  Google Scholar 

  40. K. Özdoğa, E. Şaşıoğlu, I. Galanakis, J. Appl. Phys. 113, 193903 (2013). https://doi.org/10.1063/1.4805063

    Article  ADS  Google Scholar 

  41. M.K. Hussain, O.T. Hassan, A.M. Algubili, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6512-2/

    Article  Google Scholar 

  42. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid. State Chem. 39(1), 1–50 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

    Article  Google Scholar 

  43. H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007)

    Article  ADS  Google Scholar 

  44. T. Graf, G.H. Fecher, J. Barth, J. Winterlik, C. Felser, J. Phys. D Appl. Phys. 42, 084003 (2009)

    Article  ADS  Google Scholar 

  45. G.H. Fecher, E. Rausch, B. Balke, A. Weidenkaff, C. Felser, Phys. Status Solidi A 213(3), 716–731 (2016). https://doi.org/10.1002/pssa.201532595

    Article  ADS  Google Scholar 

  46. D.M. Hoat, M. Naseri, Chem. Phys. 528, 110510 (2020). https://doi.org/10.1016/j.chemphys.2019.110510

    Article  Google Scholar 

  47. A.H. Resha, S. Auluck, Comput. Mater. Sci. 96, 90–95 (2015). https://doi.org/10.1016/j.commatsci.2014.09.008

    Article  Google Scholar 

  48. P.D. Patel, J. Pandya, S.M. Shinde, S. Gupta, S. Narayan, P.K. Jha, Comput. Mater. Sci. 23, e00472 (2020). https://doi.org/10.1016/j.cocom.2020.e00472

    Article  Google Scholar 

  49. E. Pakizeh, J. Jalilian, M. Mohammadi, RSC Adv. 9, 25900 (2019). https://doi.org/10.1039/c9ra04736k

    Article  ADS  Google Scholar 

  50. R. Haleoot, B. Hamad, J. Condens. Matter Phys. 32, 075402 (2019)

    Article  ADS  Google Scholar 

  51. A. Boudali, A. Mokaddem, B. Doumi, H. Moujri, Acta Phys. Pol. 135, 409–419 (2019). https://doi.org/10.12693/APhysPolA.135.409

    Article  ADS  Google Scholar 

  52. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1142/9789814317665_0016

    Article  ADS  Google Scholar 

  53. J. Barth, G.H. Fecher, B. Balke, S. Ouardi, T. Graf, C. Felser, A. Shkabko, A. Weidenkaff, P. Klaer, H.J. Elmers, H. Yoshikawa, S. Ueda, K. Kobayashi, Phys. Rev. B 81, 064404 (2010). https://doi.org/10.1103/PhysRevB.81.064404

    Article  ADS  Google Scholar 

  54. A. Reshak, J. Appl. Phys. 117(22), 225104 (2015). https://doi.org/10.1063/1.4922426

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. RajeswaraPalanichamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenakshi, R., Srinivasan, R.A.S., Amudhavalli, A. et al. First principles study of structural, elastic, electronic, magnetic and thermoelectric properties of ZrRhYZ (Y = Hf, La; Z = Al, Ga, In) quaternary Heusler alloys. Eur. Phys. J. Plus 137, 1159 (2022). https://doi.org/10.1140/epjp/s13360-022-03388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03388-x

Navigation