Skip to main content
Log in

Tuning of nonlinear optical characteristics of Mathieu quantum dot by laser and electric field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2022

This article has been updated

Abstract

In this work, for the first time, the total refractive index (TRICs) and total absorption coefficients (TACs) of In\(_{x}\)Ga\(_{1-x}\)As/GaAs Mathieu quantum dot (MQD) with hydrogenic impurity under the influence of the external electric field and laser field are probed. Within the framework of the Ehlotzky approximation, considering the Kramers–Henneberger transformation and dipole approximation, the time-dependent in the wave equation is transferred from the kinetic energy operator to the potential energy function. Then, the new Schrödinger equation for the MQD including the hydrogenic impurity under the external electric field and monochromatic linearly polarized laser radiation is solved numerically by employing the tridiagonal matrix method. In order to study the TRICs and TACs of MQD, the iterative method and compact-density-matrix formalism are employed. The influence of structural parameters as well as the external factors on the TRICs and TACs of the MQD is examined. The effects of external electric field, laser field, In-concentration, impurity atom position, the MQD depth and width parameters on the TRICs and TACs are investigated in detail, and functional ranges of relevant parameters are also determined for the purpose. In addition, the alternatives of these parameters to each other are also discussed. It is important for experimental research that all parameter values used are accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Not applicable.

Data availability statement

The data generated during the current study are accessible. [Authors’ comment: The data would be available on reasonable request.]

Change history

References

  1. A. Tartakovskii, Quantum Dots Optics, Electron Transport and Future Applications (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  2. A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50(1), 1 (2001)

    Article  Google Scholar 

  3. M. Nirmal, L. Brus, Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999)

    Article  Google Scholar 

  4. E.H. Sargent, Colloidal quantum dot solar cells. Nat. Photon. 6(3), 133 (2012)

    Article  Google Scholar 

  5. I. Lagraa, B. Soudini, H. Abid, S. Taleb, Study and optimization of structure InAs/InGaAs quantum dot in-a-well long-wave infrared photodetector. Optik 251, 168494 (2022)

    Article  Google Scholar 

  6. A.J. Shields, M.P. O’Sullivan, I. Farrer, D.A. Ritchie, M.L. Leadbeater, N.K. Patel, R.A. Hogg, C.E. Norman, N.J. Curson, M. Pepper, Single photon detection with a quantum dot transistor. Jpn. J. Appl. Phys. 40, 2058–2064 (2021)

    Article  Google Scholar 

  7. V. Aroutiounian, S. Petrosyan, A. Khachatryan, Quantum dot solar cells. J. Appl. Phys. 89, 2268 (2001)

    Article  Google Scholar 

  8. D.E. Fouskidis, K.E. Zoiros, A. Hatziefremidis, Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Top. Quantum Electron. 27, 7600915 (2021)

    Article  Google Scholar 

  9. S. Ma, Z. Chen, H. Sun, N.K. Dutta, High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Express 8, 6417 (2010)

    Article  Google Scholar 

  10. P. Baser, M.K. Bahar, Evaluation of the external electric- and magnetic field-driven Mathieu quantum dot’s optical observables. Physica B 639, 413991 (2022)

    Article  Google Scholar 

  11. J.N.L. Connor, T. Uzer, R.A. Marcus, Eigenvalues of the Schrödinger equation for a periodic potential with nonperiodic boundary conditions: A uniform semiclassical analysis. J. Chem. Phys. 80, 5095 (1984)

    Article  MathSciNet  Google Scholar 

  12. H. Panahı, M. Baradaran, S.R. Azızıan, Solutıons of the quası-exactly solvable mathıeu potentıal by the asymptotıc iteratıon method. Romanian Rep. Phys. 68, 56 (2016)

    Google Scholar 

  13. D.S. Jiang, Y.H. Zhang, C. Abraham, K. Syassen, J.B. Xia, K. Ploog, A study of resonant Raman scattering in GaInAs/AlInAs multiple quantum wells. Superlattices Microstruct. 12, 273 (1992)

    Article  Google Scholar 

  14. Y. He, W. Yan, Fabrication and simulation of GaInAs Solar cells using compositionally step-graded AlGaInAs buffers on GaAs substrate. Opt. Quant. Electron. 52, 372 (2020)

    Article  Google Scholar 

  15. W. Gillin, Y.S. Tang, N.J. Whitehead, K.P. Homewood, B.J. Sealy, M.T. Emeny, C.R. Whitehouse, Thermal processing of strained GaInAs/GaAs high hole mobility transistor structures. Appl. Phys. Lett. 56, 1116 (1990)

    Article  Google Scholar 

  16. D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, Member, IEEE, and K. Iga 1.17- m Highly Strained GaInAs-GaAs Quantum-Well Laser, IEEE Photonics Technology Letters, 11, 946, (1999)

  17. C. Thirstrup, Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures. Appl. Phys. Lett. 61, 2641 (1992)

    Article  Google Scholar 

  18. H. Deng, Q. Yang, Z. Wang, X. Guo, H. Shao, X. Li, H. Gong, InGaAs short wavelength infrared detector based on carrier collection effect. Infrared Device and Infrared Technology 12061, 407 (2021)

    Google Scholar 

  19. G. Rezaei, B. Vaseghi, J. Ebrahimi, External electric field effects on the electronic and hydrogenic impurity states in ellipsoidal and semi-ellipsoidal quantum dots. Superlattices Microstruct. 49, 591 (2011)

    Article  Google Scholar 

  20. F. Ungan, M.K. Bahar, Optical specifications of laser-induced Rosen–Morse quantum well. Opt. Mater. 90, 231 (2019)

    Article  Google Scholar 

  21. S. Aktas, A. Bilekkaya, F.K. Boz, S.E. Okan, Electron transmission in symmetric and symmetric double-barrier structures controlled by laser fields. Superlattices Microstruct. 85, 266 (2015)

    Article  Google Scholar 

  22. R.Y. Yan, J. Tang, Z.H. Zhang, Optical properties in GaAs/AlGaAs semiparabolic quantum wells by the finite difference method: combined effects of electric field and magnetic field. Int. J. Mod. Phys. B 32, 1850159 (2018)

    Article  Google Scholar 

  23. E.C. Niculescua, L.M. Burileanu, Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field. Eur. Phys. J. B 74, 117 (2010)

    Article  Google Scholar 

  24. M.J. Karimi, H. Vafaei, Second-order nonlinear optical properties in a strained InGaN/AlGaN quantum well under the intense laser field. Superlattices Microstruct. 78, 1 (2015)

    Article  Google Scholar 

  25. D. Brunne, M. Lafrentz, V.V. Pavlov, R.V. Pisarev, A.V. Rodina, D.R. Yakovlev, M. Bayer, Electric field effect on optical harmonic generation at the exciton resonances in GaAs. Phys. Rev. B 92, 085202 (2015)

    Article  Google Scholar 

  26. A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1 (2001)

    Article  Google Scholar 

  27. C. Xia, Z. Zeng, S. Wei, Electron and impurity states in GaN/AlGaN coupled quantum dots: effects of electric field and hydrostatic pressure. J. Appl. Phys. 108, 054307 (2010)

    Article  Google Scholar 

  28. Gh. Safarpour, M.A. Izadi, E. Niknam, M. Moradi, M.M. Golshan, Simultaneous effects of external electric field and aluminum concentration on the binding energy of a laser-dressed donor impurity in a spherical quantum dot confined at the center of a cylindrical nano-wire. Phys. B 436, 14 (2014)

    Article  Google Scholar 

  29. W. Xie, Y. Chen, Optical absorption and refractive index of a donor impurity in a three-dimensional quantum pseudodot. Superlattices Microstruct. 50, 691 (2011)

    Article  Google Scholar 

  30. E.C. Niculescu, D. Bejan, Off-centre impurity-related nonlinear optical absorption, second and third harmonic generation in a two-dimensional quantum ring under magnetic field. Philos. Mag. 97(24), 2089–2107 (2017)

    Article  Google Scholar 

  31. S. Saha, S. Pal, J. Ganguly, M. Ghosh, Exploring optical refractive index change of impurity doped quantum dots driven by white noise. Superlattices Microstruct. 88, 620 (2015)

    Article  Google Scholar 

  32. A. Mandal, S. Sarkar, A.P. Ghosh, M. Ghosh, Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential. Chem. Phys. 463, 149 (2015)

    Article  Google Scholar 

  33. J. Ganguly, S. Saha, S. Pal, M. Ghosh, Noise-driven optical absorption coefficients of impurity doped quantum dots. Physica E 75, 246 (2016)

    Article  Google Scholar 

  34. J. D. Jackson, Classical Electrodynamics, Third Edition, Wiley, 1999

  35. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Prentice-Hall, Upper Saddle River, 2003)

    Google Scholar 

  36. W.C. Henneberger, Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 21, 838 (1968)

    Article  Google Scholar 

  37. H.A. Kramers, Collected Scientific Paper, vol. 866 (North-Holland, Amsterdam, 1956)

    Google Scholar 

  38. F.M.S. Lima, M.A. Amato, L.S.F. Olavo, O.A.C. Nunes, A.L.A. Fonseca, E.F. da Silva, Jr., Intense laser field effects on the binding energy of impurities in semiconductors. Phys. Rev. B 75, 073201 (2007)

    Article  Google Scholar 

  39. M. Gavrila, J.Z. Kaminski, Free-free transitions in intense high-frequency laser fields. Phys. Rev. Lett. 52, 613 (1984)

    Article  Google Scholar 

  40. F. Ehlotzky, Scattering phenomena in strong radiation fields II. Can. J. Phys. 63, 907 (1985)

    Article  MathSciNet  Google Scholar 

  41. F. Ehlotzky, Positronium decay in intense high frequency laser fields. Phys. Lett. A 126, 524 (1988)

    Article  Google Scholar 

  42. M.K. Bahar, Effects of laser radiation field on energies of hydrogen atom in plasmas. Phys. Plasmas 22, 092709 (2015)

    Article  Google Scholar 

  43. M.K. Bahar, A. Soylu, Laser-driven two-electron quantum dot in plasmas. Phys. Plasmas 25, 062113 (2018)

    Article  Google Scholar 

  44. M.K. Bahar, A. Soylu, Two-electron pseudodot system with laser effect in plasmas. IEEE Trans. Plasma Sci. 47, 1713 (2019)

    Article  Google Scholar 

  45. M. Kalinski, J.H. Eberly, New states of hydrogen in a circularly polarized electromagnetic field. Phys. Rev. Lett. 77, 2420 (1996)

    Article  Google Scholar 

  46. B.N. Datta, Numerical Linear Algebra and Applications, 2nd edn. (SIAM, Philadelphia, 2010)

    Book  MATH  Google Scholar 

  47. R.W. Boyd, Nonlinear Optics, 3rd edn. (Rochester, New York, 2007)

    Google Scholar 

  48. K. Kılıç, M.K. Bahar, Optical response of plasma processed quantum dot under the external fields. Int. J. Quantum Chem. 121, e26564 (2021)

    Article  Google Scholar 

  49. S. Paul, J.B. Roy, P.K. Basu, Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in Ga\(_{x}\)In\(_{1-x}\)As. J. Appl. Phys. 69, 827 (1991)

    Article  Google Scholar 

  50. F. Ungan, M.K. Bahar, M.G. Barseghyan, L.M. Perez, D. Laroze, Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik 236, 16662 (2021)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bahar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, M.K., Başer, P. Tuning of nonlinear optical characteristics of Mathieu quantum dot by laser and electric field. Eur. Phys. J. Plus 137, 1138 (2022). https://doi.org/10.1140/epjp/s13360-022-03362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03362-7

Navigation