Skip to main content

Advertisement

Log in

Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Rechargeable lithium–air batteries (LABs) are future substitutes for traditional lithium-ion batteries. However, during charge/discharge cycles, due to the unstable interface between lithium anodes and electrolytes, the Coulombic efficiency of LABs decreases, leading to their short cycle life. These restrictions can be eliminated by using the solid-electrolyte-interphase (SEI) as an anode protective layer. In this study, the major physical attributes and mechanical features of fluorine-doped lithium oxide (Li(2−x)O(1−x)Fx), as advanced SEI, were scrutinized through the molecular dynamics (MD) simulation method. The ionic properties of \({\mathrm{Li}}_{2\left(1-\delta \right)}{\mathrm{O}}_{\left(1-\delta \right)}\) were also probed. The results revealed that in \({\mathrm{Li}}_{2\left(1-\delta \right)}{\mathrm{O}}_{\left(1-\delta \right)}\), the lithium vacancies were trapped by the oxygen vacancies and localized around them. This trapping process increased the activation energy barrier and declined lithium diffusivity, thereby boosting the battery charging time. Conversely, in Li(2−x)O(1−x)Fx, there was no lithium vacancy trap due to the presence of fluoride ions. The investigation of the mechanical features of Li(2−x)O(1−x)Fx at 300 K indicated that variations in the concentration of fluoride ions had no significant influence on the mechanical moduli (i.e., Young’s modulus). Hence, using Li(2−x)O(1−x)Fx as an SEI layer reduces the battery charging time and self-discharge rates, increases the charge retention time, and offers acceptable mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: The information and simulation codes that support the findings of this research are available from the corresponding author upon reasonable request.]”.

References

  1. V. Blay, R.E. Galian, L.M. Muresan, D. Pankratov, P. Pinyou, G. Zampardi, Research frontiers in energy-related materials and applications for 2020–2030. Adv. Sustain. Syst. 4, 1900145 (2020). https://doi.org/10.1002/adsu.201900145

    Article  Google Scholar 

  2. T. Kim, W. Song, D.Y. Son, L.K. Ono, Y. Qi, Lithium–ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019). https://doi.org/10.1039/C8TA10513H

    Article  Google Scholar 

  3. K. Virmani, C. Deepak, S. Sharma, U. Chadha, S.K. Selvaraj, Nanomaterials for automotive outer panel components: a review. Eur. Phys. J. Plus. 136, 1–29 (2021). https://doi.org/10.1140/epjp/s13360-021-01931-w

    Article  Google Scholar 

  4. F. Wu, Y. Yu, Toward true lithium–air batteries. Joule. 2, 815–817 (2018). https://doi.org/10.1016/j.joule.2018.04.019

    Article  Google Scholar 

  5. H.D. Lim, B. Lee, Y. Bae, H. Park, Y. Ko, H. Kim, J. Kim, K. Kang, Reaction chemistry in rechargeable Li–O2 batteries. Chem. Soc. Rev. 46, 2873–2888 (2017). https://doi.org/10.1039/c6cs00929h

    Article  Google Scholar 

  6. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, LigO2 and LigS batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  ADS  Google Scholar 

  7. Y. Liu, B. Li, H. Kitaura, X. Zhang, M. Han, P. He, H. Zhou, Fabrication and performance of all-solid-state Li–air battery with SWCNTs/LAGP cathode. ACS Appl. Mater. Interfaces. 7, 17307–17310 (2015). https://doi.org/10.1021/acsami.5b04409

    Article  Google Scholar 

  8. J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10, 860–884 (2017). https://doi.org/10.1039/c6ee03499c

    Article  Google Scholar 

  9. J. Yi, X. Liu, S. Guo, K. Zhu, H. Xue, H. Zhou, Novel stable gel polymer electrolyte: toward a high safety and long life Li–air battery. ACS Appl. Mater. Interfaces 7, 23798–23804 (2015). https://doi.org/10.1021/acsami.5b08462

    Article  Google Scholar 

  10. S. Li, J. Yang, Y. Lu, Lithium metal anode, in Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, Chichester (2019), pp. 1–21. https://doi.org/10.1002/9781119951438.eibc2677

  11. C. Wang, Z. Xie, Z. Zhou, Lithium–air batteries: challenges coexist with opportunities. APL Mater. 7, 40701 (2019). https://doi.org/10.1063/1.5091444

    Article  Google Scholar 

  12. R.S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L.A. Curtiss, K. Amine, The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. Chemsuschem 6, 51–55 (2013). https://doi.org/10.1002/cssc.201200810

    Article  Google Scholar 

  13. J.L. Shui, J.S. Okasinski, P. Kenesei, H.A. Dobbs, D. Zhao, J.D. Almer, D.J. Liu, Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 1–7 (2013). https://doi.org/10.1038/ncomms3255

    Article  Google Scholar 

  14. K. Chen, D.Y. Yang, G. Huang, X.B. Zhang, Lithium–air batteries: air-electrochemistry and anode stabilization. Acc. Chem. Res. 54, 632–641 (2021). https://doi.org/10.1021/acs.accounts.0c00772

    Article  Google Scholar 

  15. M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis, J.R. Jokisaari, C. Liu, B. Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K.C. Lau, R.S. Assary, F. Khalili-Araghi, R.F. Klie, L.A. Curtiss, A. Salehi-Khojin, A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018). https://doi.org/10.1038/nature25984

    Article  ADS  Google Scholar 

  16. X. Xin, K. Ito, A. Dutta, Y. Kubo, Dendrite-free epitaxial growth of lithium metal during charging in Li–O2 batteries. Angew. Chemie Int. Ed. 57, 13206–13210 (2018). https://doi.org/10.1002/anie.201808154

    Article  Google Scholar 

  17. Q.C. Liu, J.J. Xu, S. Yuan, Z.W. Chang, D. Xu, Y. Bin Yin, L. Li, H.X. Zhong, Y.S. Jiang, J.M. Yan, X.B. Zhang, Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 27, 5241–5247 (2015). https://doi.org/10.1002/adma.201501490

    Article  Google Scholar 

  18. X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 1–7 (2017). https://doi.org/10.1038/nenergy.2017.119

    Article  Google Scholar 

  19. D.J. Lee, H. Lee, Y.J. Kim, J.K. Park, H.T. Kim, Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium–metal anode. Adv. Mater. 28, 857–863 (2016). https://doi.org/10.1002/adma.201503169

    Article  Google Scholar 

  20. N. Togasaki, T. Momma, T. Osaka, Role of the solid electrolyte interphase on a Li metal anode in a dimethylsulfoxide-based electrolyte for a lithium–oxygen battery. J. Power Sources 294, 588–592 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.092

    Article  ADS  Google Scholar 

  21. S. Wu, K. Zhu, J. Tang, K. Liao, S. Bai, J. Yi, Y. Yamauchi, M. Ishida, H. Zhou, A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy Environ. Sci. 9, 3262–3271 (2016). https://doi.org/10.1039/c6ee01512c

    Article  Google Scholar 

  22. Y. Yu, G. Huang, J.Z. Wang, K. Li, J.L. Ma, X.B. Zhang, In situ designing a gradient Li+ capture and quasi-spontaneous diffusion anode protection layer toward long-life Li−O2 batteries. Adv. Mater. 32, 2004157 (2020). https://doi.org/10.1002/adma.202004157

    Article  Google Scholar 

  23. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  ADS  Google Scholar 

  24. T. Oda, Y. Oya, S. Tanaka, W.J. Weber, Validation of potential models for Li2O in classical molecular dynamics simulation. J. Nucl. Mater. 367–370A, 263–268 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.139

    Article  ADS  Google Scholar 

  25. A. Tron, A. Nosenko, Y.D. Park, J. Mun, Synthesis of the solid electrolyte Li2O–LiF–P2O5 and its application for lithium-ion batteries. Solid State Ionics 308, 40–45 (2017). https://doi.org/10.1016/j.ssi.2017.05.019

    Article  Google Scholar 

  26. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Ionic-to-electronic conductivity of glasses in the P2O5–V2O5–ZnO–Li2O system. Eur. Phys. J. Plus 131, 1–8 (2016). https://doi.org/10.1140/epjp/i2016-16421-y

    Article  Google Scholar 

  27. L.S. Combes, S.S. Ballard, K.A. McCarthy, Mechanical and thermal properties of certain optical crystalline materials*. J. Opt. Soc. Am. 41, 215 (1951). https://doi.org/10.1364/josa.41.000215

    Article  ADS  Google Scholar 

  28. N.S. Saetova, A.A. Raskovalov, B.D. Antonov, T.A. Denisova, N.A. Zhuravlev, Structural features of Li2O–V2O5–B2O3 glasses: experiment and molecular dynamics simulation. J. Non. Cryst. Solids. 545, 120253 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120253

    Article  Google Scholar 

  29. S. Alavi, Molecular Simulations: Fundamentals and Practice (Wiley, New York, 2020)

    Book  Google Scholar 

  30. M.C.C. Ribeiro, Chemla effect in molten LiCl/KCl and LiF/KF mixtures. J. Phys. Chem. B 107, 4392–4402 (2003). https://doi.org/10.1021/jp027261a

    Article  Google Scholar 

  31. D.E. Galvez-Aranda, J.M. Seminario, Simulations of a LiF solid electrolyte interphase cracking on silicon anodes using molecular dynamics. J. Electrochem. Soc. 165, A717–A730 (2018). https://doi.org/10.1149/2.0991803jes

    Article  Google Scholar 

  32. T. Oda, S. Tanaka, Modeling of Li diffusivity in Li2O by molecular dynamics simulation. J. Nucl. Mater. 386–388, 1087–1090 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.294

    Article  ADS  Google Scholar 

  33. K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwalla, C.V. Singh, M. Barati, A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chem. Eng. J. 313, 1184–1193 (2017). https://doi.org/10.1016/j.cej.2016.11.011

    Article  Google Scholar 

  34. H. Araghi, S. Rezaee, Z. Zabihi, Ionic conductivity of oxygen in BaTiO3, Ba0.9A0.1TiO3-δ (A: Li+, Na+, Ca2+), and BaTi0.9B0.1O3-δ (B: V3+, Cr3+ Si4+) crystals with cubic perovskite structure as cathode in fuel cell: a molecular dynamics study. J. Solid State Chem. 258, 640–646 (2018). https://doi.org/10.1016/j.jssc.2017.11.038

    Article  ADS  Google Scholar 

  35. M. Kohestanian, Z. Sohbatzadeh, S. Rezaee, Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC)/ different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): a molecular dynamics simulation. Mater. Today Commun. 23, 100922 (2020). https://doi.org/10.1016/j.mtcomm.2020.100922

    Article  Google Scholar 

  36. R. Momen, R. Rezaee, B. Azizi, S. Rezaee, H. Hou, X. Ji, Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries. Eur. Phys. J. Plus. 137, 360 (2022). https://doi.org/10.1140/epjp/s13360-022-02551-8

    Article  Google Scholar 

  37. J.G. Rodeja, M. Meyer, M. Hayoun, Derivation and validation of model potentials for Li2O from density-functional theory. Model. Simul. Mater. Sci. Eng. 9, 81–96 (2001). https://doi.org/10.1088/0965-0393/9/2/303

    Article  ADS  Google Scholar 

  38. M.M. Islam, T. Bredow, C. Minot, Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O. J. Phys. Chem. B. 110, 9413–9420 (2006). https://doi.org/10.1021/jp0566764

    Article  Google Scholar 

  39. X.F. Li, X.R. Chen, C.M. Meng, G.F. Ji, Ab initio calculations of elastic constants and thermodynamic properties of Li2O for high temperatures and pressures. Solid State Commun. 139, 197–200 (2006). https://doi.org/10.1016/j.ssc.2006.06.013

    Article  ADS  Google Scholar 

  40. C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  41. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  42. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 15012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

  43. H. Luo, S. Xiao, S. Wang, P. Huai, H. Deng, W. Hu, Molecular dynamics simulation of diffusion and viscosity of liquid lithium fluoride. Comput. Mater. Sci. 111, 203–208 (2016). https://doi.org/10.1016/j.commatsci.2015.09.052

    Article  Google Scholar 

  44. E.A. Mason, W.E. Rice, The intermolecular potentials of helium and hydrogen. J. Chem. Phys. 22, 522–535 (1954). https://doi.org/10.1063/1.1740100

    Article  ADS  Google Scholar 

  45. R.K. Pathria, Statistical Mechanics (Elsevier, New York, 2016)

    MATH  Google Scholar 

  46. K. Huang, Introduction to Statistical Physics (Chapman and Hall/CRC, New York, 2009)

    Book  Google Scholar 

  47. E.B. Jones, V. Stevanović, The glassy solid as a statistical ensemble of crystalline microstates. Npj Comput. Mater. 6, 1–6 (2020). https://doi.org/10.1038/s41524-020-0329-2

    Article  Google Scholar 

  48. H.J. Kwon, H.C. Lee, J. Ko, I.S. Jung, H.C. Lee, H. Lee, M. Kim, D.J. Lee, H. Kim, T.Y. Kim, D. Im, Effects of oxygen partial pressure on Li–air battery performance. J. Power Sources 364, 280–287 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.052

    Article  ADS  Google Scholar 

  49. J. Li, L. Hou, M. Yu, Q. Li, T. Zhang, H. Sun, Review and recent advances of oxygen transfer in Li–air batteries. ChemElectroChem 8, 3588–3603 (2021). https://doi.org/10.1002/celc.202100560

    Article  Google Scholar 

  50. L. Li, Z. Wen Chang, X.B. Zhang, Recent progress on the development of metal-air batteries. Adv. Sustain. Syst. 1, 1700036 (2017). https://doi.org/10.1002/adsu.201700036

    Article  Google Scholar 

  51. F. Wang, Y. Deng, C. Yuan, Life cycle assessment of lithium oxygen battery for electric vehicles. J. Clean. Prod. 264, 121339 (2020). https://doi.org/10.1016/j.jclepro.2020.121339

    Article  Google Scholar 

  52. K. Yoo, A.M. Dive, S. Kazemiabnavi, S. Banerjee, P. Dutta, Effects of operating temperature on the electrical performance of a Li-air battery operated with ionic liquid electrolyte. Electrochim. Acta 194, 317–329 (2016). https://doi.org/10.1016/j.electacta.2016.02.099

    Article  Google Scholar 

  53. J.B. Park, J. Hassoun, H.G. Jung, H.S. Kim, C.S. Yoon, I.H. Oh, B. Scrosati, Y.K. Sun, Influence of temperature on lithium–oxygen battery behavior. Nano Lett. 13, 2971–2975 (2013). https://doi.org/10.1021/nl401439b

    Article  ADS  Google Scholar 

  54. V. Ponce, D.E. Galvez-Aranda, J.M. Seminario, Analysis of an all-solid state nanobattery using molecular dynamics simulations under an external electric field. Phys. Chem. Chem. Phys. 23, 597–606 (2021). https://doi.org/10.1039/d0cp02851g

    Article  Google Scholar 

  55. J. Kong, Z. Bo, H. Yang, J. Yang, X. Shuai, J. Yan, K. Cen, Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene nanochannels. Phys. Chem. Chem. Phys. 19, 7678–7688 (2017). https://doi.org/10.1039/c6cp08752c

    Article  Google Scholar 

  56. N. Ertekin, S. Rezaee, Effect of anion and cation vacancies pairs in conduct of the Ba1−3xTiO31−x and [Formula presented] (x = 0.0033) as a memristor. Mater. Today Commun. 31, 103333 (2022). https://doi.org/10.1016/j.mtcomm.2022.103333

    Article  Google Scholar 

  57. L.A. Selis, J.M. Seminario, Dendrite formation in silicon anodes of lithium-ion batteries. RSC Adv. 8, 5255–5267 (2018). https://doi.org/10.1039/c7ra12690e

    Article  ADS  Google Scholar 

  58. S. Li, Q. Wu, D. Zhang, Z. Liu, Y. He, Z.L. Wang, C. Sun, Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy 56, 555–562 (2019). https://doi.org/10.1016/j.nanoen.2018.11.070

    Article  Google Scholar 

  59. L. Wang, S. Yin, C. Zhang, Y. Huan, J. Xu, Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries. J. Power Sources 392, 265–273 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.007

    Article  ADS  Google Scholar 

  60. Y. Oishi, Y. Kamei, M. Akiyama, T. Yanagi, Self-diffusion coefficient of lithium in lithium oxide. J. Nucl. Mater. 87, 341–344 (1979). https://doi.org/10.1016/0022-3115(79)90570-1

    Article  ADS  Google Scholar 

  61. L. Benitez, J.M. Seminario, Ion diffusivity through the solid electrolyte interphase in lithium–ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017). https://doi.org/10.1149/2.0181711jes

    Article  Google Scholar 

  62. A.D. Mulliner, P.C. Aeberhard, P.D. Battle, W.I.F. David, K. Refson, Diffusion in Li2O studied by non-equilibrium molecular dynamics for 873 < T/K < 1603. Phys. Chem. Chem. Phys. 17, 21470–21475 (2015). https://doi.org/10.1039/c5cp02628h

    Article  Google Scholar 

  63. M.M. Islam, T. Bredow, Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C. 113, 672–676 (2009). https://doi.org/10.1021/jp807048p

    Article  Google Scholar 

  64. Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C 115, 7044–7049 (2011). https://doi.org/10.1021/jp112202s

    Article  Google Scholar 

  65. M. Akiyama, K. Ando, Y. Oishi, Synthesis of Li2O single crystal by vacuum fusion technique. J. Nucl. Sci. Technol. 17, 154–155 (1980). https://doi.org/10.1080/18811248.1980.9732558

    Article  Google Scholar 

  66. A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, Stability of solid-electrolyte interphase (SEI) on the lithium metal surface in lithium metal batteries (LMBs). ACS Appl. Energy Mater. 3, 10560–10567 (2020). https://doi.org/10.1021/acsaem.0c01605

    Article  Google Scholar 

  67. R. Guo, B.M. Gallant, Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. 32, 5525–5533 (2020). https://doi.org/10.1021/acs.chemmater.0c00333

    Article  Google Scholar 

  68. E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997). https://doi.org/10.1149/1.1837858

    Article  Google Scholar 

  69. J. Christensen, J. Newman, A mathematical model for the lithium–ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 151, A1977 (2004). https://doi.org/10.1149/1.1804812

    Article  Google Scholar 

  70. K. Leung, K.L. Jungjohann, Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces. J. Phys. Chem. C. 121, 20188–20196 (2017). https://doi.org/10.1021/acs.jpcc.7b06983

    Article  Google Scholar 

  71. Q. Zhang, P. Lu, Z. Liu, M.W. Verbrugge, X. Xiao, J. Pan, Y.T. Cheng, B.W. Sheldon, Y. Qi, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Batter. Congr. 2016(16), 2011–2016 (2016). https://doi.org/10.1149/ma2016-03/2/192

    Article  Google Scholar 

  72. A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C. 123, 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436

    Article  Google Scholar 

  73. S. Lorger, R.E. Usiskin, J. Maier, Transport and charge carrier chemistry in lithium sulfide. Adv. Funct. Mater. 29, A2215 (2019). https://doi.org/10.1002/adfm.201807688

    Article  Google Scholar 

  74. P. Goharian, B. Eftekhari Yekta, A.R. Aghaei, S. Banijamali, Lithium ion-conducting glass-ceramics in the system Li2O–TiO2–P2O5–Cr2O3–SiO2. J. Non. Cryst. Solids. 409, 120–125 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.016

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houshang Araghi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17048 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, S., Araghi, H., Noshad, H. et al. Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries. Eur. Phys. J. Plus 137, 1194 (2022). https://doi.org/10.1140/epjp/s13360-022-03345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03345-8

Navigation