Skip to main content
Log in

On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: All data contained in this manuscript are available upon request by contacting the corresponding author.]

Code availability

Data will be made available on reasonable request.

References

  1. S. Iijima, Nature 354(6348), 56 (1991)

    Article  ADS  Google Scholar 

  2. E.T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61(13), 1899 (2001)

    Article  Google Scholar 

  3. S. Shahidi, B. Moazzenchi, J. Text. Inst. 109(12), 1653 (2018)

    Article  Google Scholar 

  4. S. Kanagaraj, F.R. Varanda, T.V. Zhiltsova, M.S.A. Oliveira, J.A.O. Simões, Compos. Sci. Technol. 67(15–16), 3071 (2007)

    Article  Google Scholar 

  5. K. Shirvanimoghaddam, B. Polisetti, A. Dasari, J. Yang, S. Ramakrishna, M. Naebe, Polymer 145, 294 (2018)

    Article  Google Scholar 

  6. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391(6662), 62 (1998)

    Article  ADS  Google Scholar 

  7. Y. Zare, K. Y. Rhee, Eng. Comput. 38, 2497 (2020)

  8. H.-S. Shen, Compos. Struct. 91(1), 9 (2009)

    Article  Google Scholar 

  9. H.-S. Shen, C.-L. Zhang, Mater. Des. 31(7), 3403 (2010)

    Article  Google Scholar 

  10. F. Ebrahimi, N. Farazmandnia, Mech. Adv. Mater. Struct. 24(10), 820 (2016)

    Article  Google Scholar 

  11. N.D. Duc, P.H. Cong, N.D. Tuan, P. Tran, N.V. Thanh, Thin-Walled Struct. 115, 300 (2017)

    Article  Google Scholar 

  12. H.-S. Shen, Compos. Struct. 116, 477 (2014)

    Article  Google Scholar 

  13. M.I. Ansari, A.K. Chaubey, A. Kumar, A. Chakrabarti, S.S. Mishra, Materials Today: Proceedings 18, 628 (2019)

    Google Scholar 

  14. A.H. Sofiyev, F. Tornabene, R. Dimitri, N. Kuruoglu, Nanomaterials (Basel) 10(3), 419 (2020)

    Article  Google Scholar 

  15. H.-S. Shen, Y. Xiang, Eng. Struct. 56, 698 (2013)

    Article  Google Scholar 

  16. M. Rezaiee-Pajand, E. Sobhani, A.R. Masoodi, Aerosp. Sci. Technol. 105, 105998 (2020)

    Article  Google Scholar 

  17. H. Mallek, H. Jrad, M. Wali, A. Kessentini, F. Gamaoun, F. Dammak, J. Vib. Control 26(13–14), 1157 (2020)

    Article  MathSciNet  Google Scholar 

  18. N.D. Duc, P.P. Minh, Aerosp. Sci. Technol. 112, 106654 (2021)

    Article  Google Scholar 

  19. Y. Cao, F. Musharavati, S. Baharom, P. Talebizadehsardari, T.A. Sebaey, A. Eyvazian, A.M. Zain, Steel Compos. Struct. 37(2), 253 (2020)

    Google Scholar 

  20. Ö. Civalek, B. Uzun, M.Ö. Yaylı, B. Akgöz, Eur. Phys. J. Plu 135(4), 381 (2020)

  21. B. Adhikari, B.N. Singh, J. Aerosp. Eng. 32(5), 04019061 (2019)

  22. M.H. Jalaei, H.T. Thai, Ӧ Civalek, Int. J. Eng. Sci. 172L, 103629 (2022)

    Article  Google Scholar 

  23. J.-L. Zhao, X. Chen, G.-L. She, Y. Jing, R.-Q. Bai, J. Yi, H.-Y. Pu, J. Luo, Steel Compos. Struct. 43(6), 797 (2022)

    Google Scholar 

  24. Ö. Civalek, B. Uzun, M. Ö. Yayli, Eur. Phys. J. Plu 137(1), 113 (2022)

  25. B. Akgöz, Ö. Civalek, Int. J. Mech. Sci. 99, 10 (2015)

    Article  Google Scholar 

  26. K.M. Liew, Z. Pan, L.-W. Zhang, Sci. China-Phys. Mech. Astron. 63(3), 234601 (2019)

  27. K.M. Liew, Z.X. Lei, L.W. Zhang, Compos. Struct. 120, 90 (2015)

    Article  Google Scholar 

  28. Y. Zhen, Y. Gong, Y. Tang, Compos. Struct. 268, 113980 (2021)

  29. F. Liang, A. Gao, X.-F. Li, W.-D. Zhu, Appl. Math. Model. 95, 320 (2021)

    Article  MathSciNet  Google Scholar 

  30. R. Abdollahi, R. Dehghani Firouz-abadi, M. Rahmanian, J. Sound Vibr. 494, 115891 (2021)

  31. B. Zhu, Q. Xu, M. Li, Y. Li, Compos. Struct. 252, 112672 (2020)

  32. K. Zhou, Q. Ni, L. Wang, H.L. Dai, Nonlinear Dyn. 99(4), 2527 (2020)

    Article  Google Scholar 

  33. X. Tan, H. Ding, J.-Q. Sun, L.-Q. Chen, Ocean Eng. 203, 107258 (2020)

  34. P. Shahali, H. Haddadpour, S.A.H. Kordkheili, Appl. Ocean Res. 94, 101970 (2020)

  35. A.R. Askarian, M.R. Permoon, M. Shakouri, Int. J. Mech. Sci. 179, 105702 (2020)

  36. Z.-Q. Lu, K.-K. Zhang, H. Ding, L.-Q. Chen, Nonlinear Dyn. 100(2), 1091 (2020)

    Article  Google Scholar 

  37. R. Khodabakhsh, A.R. Saidi, R. Bahaadini, Appl. Ocean Res. 101, 102277 (2020)

  38. M. Heshmati, Ocean Eng. 203, 107192 (2020)

  39. M. Prek, Mech. Syst. Signal Proc. 21(4), 1907 (2007)

    Article  ADS  Google Scholar 

  40. D. Qing-tian, Y. Zhi-chun, Appl. Math. Model. 37(9), 6225 (2013)

    Article  MathSciNet  Google Scholar 

  41. F. Liang, X.-D. Yang, Appl. Math. Model. 77, 522 (2020)

    Article  MathSciNet  Google Scholar 

  42. Y.-W. Zhang, G.-L. She, Steel Compos. Struct. 42(3), 397 (2022)

    Google Scholar 

  43. H.-X. Ding, G.-L. She, Struct. Eng. Mech. 80(1), 63 (2021)

    Google Scholar 

  44. P. Zhang, Y. Fu, Eur. J. Mech. A-Solids 38, 12 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Y. Han, J. Elliott, Comput. Mater. Sci. 39(2), 315 (2007)

    Article  Google Scholar 

  46. J. Yang, X.-H. Huang, H.-S. Shen, Int. J. Struct. Stab. Dyn. 20(04), 2050043 (2020)

    Article  MathSciNet  Google Scholar 

  47. N. Wattanasakulpong, V. Ungbhakorn, Comput. Mater. Sci. 71, 201 (2013)

    Article  Google Scholar 

  48. J. Zhong, Y. Fu, D. Wan, Y. Li, Appl. Math. Model. 40(17–18), 7601 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 51575329, 61773254, 61625304 and 61873157; in part by Shanghai Rising-Star Program under Grants 17QA1401500; and in part by Science and Technology Commission of Shanghai under Grants 16441909400 and 17DZ1205000.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [XC], [J-LZ], [G-LS], [YJ], [H-YP] and [JL]. The first draft of the manuscript was written by [XC], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hua-Yan Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, JL., She, GL. et al. On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment. Eur. Phys. J. Plus 137, 1158 (2022). https://doi.org/10.1140/epjp/s13360-022-03234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03234-0

Navigation