Skip to main content
Log in

Role of a magnetic field in the context of inhomogeneous gravitational collapse

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Magnetic fields have been found to have an inherent capability of acting against gravity. An important question posed in the literature is whether the presence of a magnetic field can alter the dynamics of a gravitational collapse and prevent the final formation of a singularity. Inhomogeneous models of collapse have not been explored significantly in this context. In the present work, we investigate the role of magnetic fields in the evolution of inhomogeneous cylindrically symmetric models. We use an approach based on the Raychaudhuri equation for such an analysis. We show that it is quite possible for the magnetic field to avert the gravitational collapse in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The author neither used nor generated any data while performing this work.

References

  1. B. Datt, Z. Phys. 108, 314 (1938)

    Article  ADS  Google Scholar 

  2. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  3. P.S. Joshi, Global Aspects in Gravitation and Cosmology, International Series of Monographs on Physics (Clarendon Press, Oxford, 1993)

    Google Scholar 

  4. P.S. Joshi, Pramana 55, 529 (2000)

    Article  ADS  Google Scholar 

  5. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  6. S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  ADS  Google Scholar 

  7. S. Hawking, G. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  8. C. Germani, C.G. Tsagas, Phys. Rev. D 73, 064010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.G. Tsagas, Class. Quantum Gravity 23, 4323 (2006)

    Article  ADS  Google Scholar 

  10. A.P. Kouretsis, C.G. Tsagas, Phys. Rev. D 82, 124053 (2010)

    Article  ADS  Google Scholar 

  11. C.G. Tsagas, P. Mavrogiannis, Class. Quantum Gravity 38, 195020 (2021)

    Article  ADS  Google Scholar 

  12. P. Mavrogiannis, C.G. Tsagas, Phys. Rev. D 104, 124053 (2021)

    Article  ADS  Google Scholar 

  13. I.D. Novikov, Sov. Astron. 10, 731 (1967)

    ADS  Google Scholar 

  14. V. de la Cruz, W. Israel, Nuovo Cimento A 51, 744 (1967)

    Article  ADS  Google Scholar 

  15. A.K. Raychaudhuri, Ann. Inst. Henri Poincare 22, 229 (1975)

    ADS  Google Scholar 

  16. H. Ardavan, M.H. Partovi, Phys. Rev. D 16, 1664 (1977)

    Article  ADS  Google Scholar 

  17. A. Ori, Phys. Rev. D 44, 2278 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. F. de Felice, Y. Yu, J. Fang, Mon. Not. R. Astron. Soc. 277, L17 (1995)

    ADS  Google Scholar 

  19. F. de Felice, L. Siming, Y. Yunqiang, Class. Quantum Gravity 16, 2669 (1999)

    Article  ADS  Google Scholar 

  20. S. Ray, A.L. Espindola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 68, 084004 (2003)

    Article  ADS  Google Scholar 

  21. C.R. Ghezzi, Phys. Rev. D 72, 104017 (2005)

    Article  ADS  Google Scholar 

  22. A. Krasinski, K. Bolejko, Phys. Rev. D 73, 124033 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. K.S. Thorne, Quasars and High-Energy Astronomy (Gordon and Breach, New York, 1969), p.443

    Google Scholar 

  24. M.A. Melvin, Phys. Lett. 8, 65 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.A. Melvin, Phys. Rev. 139, B225 (1965)

    Article  ADS  Google Scholar 

  26. K.S. Thorne, Phys. Rev. 139, B244 (1965)

    Article  ADS  Google Scholar 

  27. C.G. Tsagas, Phys. Rev. Lett. 86, 5421 (2001)

    Article  ADS  Google Scholar 

  28. C.G. Tsagas, R. Maartens, Class. Quantum Gravity 17, 2215 (2000)

    Article  ADS  Google Scholar 

  29. A.K. Raychaudhuri, Phys. Rev. 98, 1123 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Ehlers, Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl. 11, (1961) 793; translation: J. Ehlers, Gen. Relativ. Gravit. 25, (1993) 1225

  31. S.G. Choudhury, S. Chakrabarti, A. Dasgupta, N. Banerjee, Eur. Phys. J. C 79, 1027 (2019)

    Article  ADS  Google Scholar 

  32. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  33. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  34. E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  35. K.S. Thorne, Astrophys. J. 148, 51 (1967)

    Article  ADS  Google Scholar 

  36. E.N. Parker, Cosmical Magnetic Fields (Clarendon Press, Oxford, 1979)

    Google Scholar 

  37. L. Mestel, Stellar Magnetism (Oxford University Press, Oxford, 1999)

    Google Scholar 

  38. T.A. Apostolatos, K.S. Thorne, Phys. Rev. D 46, 2435 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.L. Shapiro, S.A. Teukolsky, Phys. Rev. D 45, 2006 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Echeverria, Phys. Rev. D 47, 2271 (1993)

    Article  ADS  Google Scholar 

  41. W. Davidson, J. Math. Phys. 34, 1908 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  42. P.S. Letelier, A. Wang, Phys. Rev. D 49, 5105 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  43. B.C. Nolan, Phys. Rev. D 65, 104006 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Wang, Phys. Rev. D 68, 064006 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. B.C. Nolan, L.V. Nolan, Class. Quantum Gravity 21, 3693 (2004)

    Article  ADS  Google Scholar 

  46. T. Harada, K. Nakao, B.C. Nolan, Phys. Rev. D 80, 024025 (2009)

    Article  ADS  Google Scholar 

  47. D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge University, Cambridge, 1980)

    MATH  Google Scholar 

  48. J.D. Barrow, R. Maartens, C.G. Tsagas, Phys. Rep. 449, 131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Chakrabarti, S. Kar, Phys. Rev. D 104, 024071 (2021)

    Article  ADS  Google Scholar 

  50. D. Bini, B. Mashhoon, Phys. Rev. D 105, 124012 (2022)

    Article  ADS  Google Scholar 

  51. R. Maartens, S.D. Maharaj, Class. Quantum Gravity 3, 1005 (1986)

    Article  ADS  Google Scholar 

  52. S. Moopanar, S.D. Maharaj, J. Eng. Math. 82, 125 (2013)

    Article  Google Scholar 

  53. S. Moopanar, S.D. Maharaj, Int. J. Theor. Phys. 49, 1878 (2010)

    Article  Google Scholar 

  54. B.J. Carr, A.A. Coley, Class. Quantum Gravity 16, R31 (1999)

    Article  ADS  Google Scholar 

  55. B.J. Carr, A.A. Coley, Gen. Relat. Gravit. 37, 2165 (2005)

    Article  ADS  Google Scholar 

  56. C. Gundlach, J.M. Martin-Garcia, Liv. Rev. Rel. 10, 5 (2007)

    Article  Google Scholar 

  57. K. Nakao, T. Harada, Y. Kurita, Y. Morisawa, Prog. Theor. Phys. 122, 521 (2009)

    Article  ADS  Google Scholar 

  58. A. Wang, Phys. Rev. D 68, 064006 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Sharif, S. Aziz, Int. J. Mod. Phys. D 14, 1527 (2005)

    Article  ADS  Google Scholar 

  60. L.V. Nolan, Ph.D. thesis, Dublin City University (2007) (unpublished)

  61. E. Condron, B.C. Nolan, Class. Quantum Gravity 31, 015015 (2014)

    Article  ADS  Google Scholar 

  62. M. Sharif, S. Aziz, Int. J. Mod. Phys. A 20, 7579 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Council of Scientific and Industrial Research (CSIR), India, for providing the financial support through a senior research fellowship (Award No. 09/921(0188)/2017-EMR-I). The author is thankful to Dr. Ananda Dasgupta and Prof. Narayan Banerjee for providing valuable insights and suggestions which improved the quality of the work. The author thanks Dr. Soumya Chakrabarti for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibendu Gupta Choudhury.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta Choudhury, S. Role of a magnetic field in the context of inhomogeneous gravitational collapse. Eur. Phys. J. Plus 137, 971 (2022). https://doi.org/10.1140/epjp/s13360-022-03205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03205-5

Navigation