Skip to main content
Log in

Numerical investigation of coalescence phenomena, affected by surface acoustic waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate numerically the coalescence dynamics of two same droplets on a wettable substrate when the droplets are subjected by the surface acoustic waves (SAW). For this purpose, dynamics of the flow is simulated using Lattice Boltzmann method. At first, the coalescence phenomena are studied. Then, the effects of SAW on behaviors of droplets are illustrated. The results show that in the pumping mode, regardless of the location, the droplets coalesce when the SAWs are applied. Also, we can reduce the connection time about 60% by increasing the wave amplitude. Based on the results, the coalescence time is minimized to a certain wave amplitude that in our study occurs in the wave amplitude number (ASAW) about 16. In the jetting mode, three different dynamical behaviors are observed and are categorized with wave amplitude number. When ASAW < 8, the coalescence of two droplets and the detachment of the formed droplet occurs, while we observe the periodic detachment and connection of droplets for 8 < ASAW < 10. Then, two droplets affected by SAWs are removed from the surface for ASAW > 10. Also, we show that ASAW ≈ 14 is the optimum situation for removal of the droplets from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article.]

References

  1. P.G. De Gennes, Wetting: statics and dynamics. RMP 57, 3 (1985)

    Article  MathSciNet  Google Scholar 

  2. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 1 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.A. Fardin, M. Hautefeuille, V. Sharma, Spreading, pinching, and coalescence: the Ohnesorge units. Soft Matter 11 (2022)

  4. Y. Sui, M. Maglio, P.D. Spelt, D. Legendre, H. Ding, Inertial coalescence of droplets on a partially wetting substrate. Phys. Fluids 25, 10 (2013)

    Article  Google Scholar 

  5. M.W. Lee, D.K. Kang, S.S. Yoon, A.L. Yarin, Coalescence of two drops on partially wettable substrates. Langmuir 28, 8 (2012)

    Google Scholar 

  6. W.D. Ristenpart, P.M. McCalla, R.V. Roy, H.A. Stone, Coalescence of spreading droplets on a wettable substrate. PRL 97, 6 (2007)

    Google Scholar 

  7. Y.B. Erkan, Numerical Simulation of Coalescence of Micron-Submicron Sized Droplets and Thin Films (Middle East Technical University, 2021)

    Google Scholar 

  8. W. Liu, N. Li, Z. Sun, Z. Wang, Z. Wang, Binary droplet coalescence in shear gas flow: a molecular dynamics study. J. Mol. Liq. 354, 118841 (2022)

    Article  Google Scholar 

  9. Y.S. Tian, Z.Q. Yang, S.T. Thoroddsen, E. Elsaadawy, A new image-based microfluidic method to test demulsifier enhancement of coalescence-rate, for water droplets in crude oil. J. Pet. Sci. Eng. 208, 109720 (2022)

    Article  Google Scholar 

  10. T.M. Ho, A. Razzaghi, A. Ramachandran, K. Mikkonen, Emulsion characterization via microfluidic devices: a review on interfacial tension and stability to coalescence. Adv. Colloid Interface Sci. 299, 102541 (2022)

    Article  Google Scholar 

  11. I. Adeyemi, M. Meribout, L. Khezzar, N. Kharoua, K. AlHammadi, Numerical assessment of ultrasound supported coalescence of water droplets in crude oil. Ultrason. Sonochem. 88, 106085 (2022)

    Article  Google Scholar 

  12. C. Liu, M. Zhao, Y. Zheng, L. Cheng, J. Zhang, C.A. Tee, Coalescence-induced droplet jumping. Langmuir 37, 3 (2021)

    Google Scholar 

  13. C. Liu, M. Zhao, Y. Zheng, D. Lu, L. Song, Enhancement and guidance of coalescence-induced jumping of droplets on superhydrophobic surfaces with a U-groove. ACS Appl. Mater. Interfaces 13, 27 (2021)

    Google Scholar 

  14. M. Miot, G. Veylon, A. Wautier, P. Philippe, F. Nicot, F. Jamin, Numerical analysis of capillary bridges and coalescence in a triplet of spheres. Granul. Matter 23, 3 (2021)

    Article  Google Scholar 

  15. S. Feng, L.I. Yi, L. Zhao-Miao, C. Ren-Tuo, W. Gui-Ren, Advances in micro-droplets coalescence using microfluidics. Chin. J. Anal. Chem. 43, 12 (2015)

    Google Scholar 

  16. X. Huang, L. He, X. Luo, K. Xu, Y. Lü, D. Yang, Convergence effect of droplet coalescence under AC and pulsed DC electric fields. Int. J. Multiph. Flow 143, 103776 (2021)

    Article  Google Scholar 

  17. S.C. Lin, X. Mao, T.J. Huang, Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab Chip 12, 16 (2012)

    Article  Google Scholar 

  18. V. Aleksandrov, S. Kopysov, L. Tonkov, Vortex flows in the liquid layer and droplets on a vibrating flexible plate. Microgravity Sci. Technol. 30, 1–2 (2018)

    Article  Google Scholar 

  19. D. Sun, K.F. Böhringer, M. Sorensen, E. Nilsson, J.S. Edgar, D.R. Goodlett, Droplet delivery and nebulization system using surface acoustic wave for mass spectrometry. Lab Chip 20, 17 (2020)

    Article  Google Scholar 

  20. M. Roudini, D. Niedermeier, F. Stratmann, A. Winkler, Droplet generation in standing-surface-acoustic-wave nebulization at controlled air humidity. Phy. Rev. Appl. 14, 1 (2020)

    Google Scholar 

  21. M.H. Biroun, M. Rahmati, M. Jangi, B. Chen, Y.Q. Fu, Numerical and experimental investigations of interdigital transducer configurations for efficient droplet streaming and jetting induced by surface acoustic waves. Int. J. Multiph. Flow 136, 103545 (2021)

    Article  Google Scholar 

  22. Z. Insepov, Z. Ramazanova, N. Zhakiyev, K. Tynyshtykbayev, Water droplet motion under the influence of Surface Acoustic Waves (SAW). J. Phy. Commun. 5, 3 (2021)

    Google Scholar 

  23. W. Connacher, J. Orosco, J. Friend, Droplet ejection at controlled angles via acoustofluidic jetting. PRL 125, 18 (2020)

    Article  Google Scholar 

  24. J. Li, M.H. Biroun, R. Tao, Y. Wang, H. Torun, N. Xu, M. Rahmati, Y. Li, D. Gibson, C. Fu, J. Luo, Wide range of droplet jetting angles by thin-film based surface acoustic waves. J. Phys. D Appl. Phys. 53, 35 (2020)

    Article  Google Scholar 

  25. P. Brunet, M. Baudoin, Unstationary dynamics of drops subjected to MHz-surface acoustic waves modulated at low frequency. Exp. Fluids 63, 1 (2022)

    Article  Google Scholar 

  26. M.B. Özer, B. Çetin, An extended view for acoustofluidic particle manipulation: scenarios for actuation modes and device resonance phenomenon for bulk-acoustic-wave devices. JASA 149, 4 (2021)

    Article  Google Scholar 

  27. Y. Zhang, X. Chen, Particle separation in microfluidics using different modal ultrasonic standing waves. Ultrason. Sonochem. 75, 105603 (2021)

    Article  Google Scholar 

  28. A.G. Guex, N. Di Marzio, D. Eglin, M. Alini, T. Serra, The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater. Today Bio 10, 100110 (2021)

    Article  Google Scholar 

  29. Z. Liu, A. Fornell, M. Tenje, A droplet acoustofluidic platform for time-controlled microbead-based reactions. Biomicrofluidics 15, 3 (2021)

    Article  Google Scholar 

  30. M.H. Biroun, J. Li, R. Tao, M. Rahmati, G. McHale, L. Dong, M. Jangi, H. Torun, Y. Fu, Acoustic waves for active reduction of contact time in droplet impact. Phy. Rev. Appl. 14, 2 (2020)

    Google Scholar 

  31. N. Zhang, A. Horesh, J. Friend, Manipulation and mixing of 200 femtoliter droplets in nanofluidic channels using MHz-order surface acoustic waves. Adv. Sci. 8, 13 (2021)

    Google Scholar 

  32. Y. Wang, Q, Zhang, R. Tao, D. Chen, J. Xie, H. Torun, LE. Dodd, J. Luo, C. Fu, J. Vernon, P. Canyelles-Pericas, A rapid and controllable acoustothermal microheater using thin film surface acoustic waves, Sens. Actuators A: Phys., 318 (2021)

  33. Y. Lei, H. Hu, J. Chen, P. Zhang, Microfluidic jetting deformation and pinching-off mechanism in capillary tubes by using traveling surface acoustic waves. Actuators 9, 1 (2020)

    Article  Google Scholar 

  34. D. Mandal, S. Banerjee, Surface acoustic wave (SAW) sensors: physics. Mater. Appl. Sens. 22, 3 (2022)

    Google Scholar 

  35. A. Palla-Papavlu, S.I. Voicu, M. Dinescu, Sensitive materials and coating technologies for surface acoustic wave sensors. Chemosensors 9, 5 (2021)

    Article  Google Scholar 

  36. Q.Y. Huang, Q. Sun, H. Hu, J.L. Han, Y.L. Lei, Thermal effect in the process of surface acoustic wave atomization. Exp. Therm. Fluid Sci. 120, 110257 (2021)

    Article  Google Scholar 

  37. G. Lajoinie, T. Segers, M. Versluis, High-frequency acoustic droplet vaporization is initiated by resonance. PRL 126, 3 (2021)

    Article  Google Scholar 

  38. Y. Terakawa, J. Kondoh, Numerical and experimental study of acoustic wave propagation in glass plate/water/128YX-LiNbO3 structure. JJAP 59, SKKC08 (2020)

    Google Scholar 

  39. Q.Y. Huang, H. Hu, Y.L. Lei, J.L. Han, P. Zhang, J. Dong, Simulation and experimental investigation of surface acoustic wave streaming velocity. JJAP 59, 6 (2020)

    Google Scholar 

  40. S.M. Sheikholeslam Noori, M. Taeibi, S.A. Shams Taleghani, Multiple relaxation time color gradient lattice Boltzmann model for simulating contact angle in two-phase flows with high density ratio. EPJP 134, 8 (2019)

    ADS  Google Scholar 

  41. S.M. Sheikholeslam Noori, M. Taeibi, S.A. Shams Taleghani, Numerical analysis of droplet motion over a flat plate due to surface acoustic waves. Microgravity Sci. Technol. 32, 4 (2020)

    Article  Google Scholar 

  42. S.M. Sheikholeslam Noori, M. Taeibi, S.A. Shams Taleghani, Effects of contact angle hysteresis on drop manipulation using surface acoustic waves. Theor. Comput. Fluid Dyn. 34, 1 (2020)

    MathSciNet  Google Scholar 

  43. S.M. Sheikholeslam Noori, S.A. Shams Taleghani, M. Taeibi, Surface acoustic waves as control actuator for drop removal from solid surface. Fluid Dyn. Res. 53, 4 (2021)

    MathSciNet  Google Scholar 

  44. H. Ding, P.D. Spelt, Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75, 4 (2007)

    Article  Google Scholar 

  45. P. Brunet, M. Baudoin, O.B. Matar, F. Zoueshtiagh, Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. Phys. Rev. E 81, 3 (2010)

    Article  Google Scholar 

  46. H.W. Zheng, C. Shu, Y.T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 1 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Reis, T.N. Phillips, Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor. 40, 14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. K. Hejranfar, E. Ezzatneshan, Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method. Phys. Rev. E 92, 5 (2015)

    Article  Google Scholar 

  49. Y. Wang, X. Tao, R. Tao, J. Zhou, Q. Zhang, D. Chen, H. Jin, S. Dong, J. Xie, Y.Q. Fu, Acoustofluidics along inclined surfaces based on AlN/Si Rayleigh surface acoustic waves. Sens. Actuators A Phys. 306, 111967 (2020)

    Article  Google Scholar 

  50. S.M. Sheikholeslam Noori, S.A. Shams Taleghani, M. Taeibi, Phenomenological investigation of drop manipulation using surface acoustic waves. Microgravity Sci. Technol. 32, 6 (2020)

    Google Scholar 

  51. J.D. Peterson, I. Bagkeris, V. Michael, A new framework for numerical modeling of population balance equations: solving for the inverse cumulative distribution function. Chem. Eng. Sci. 259, 117781 (2022)

    Article  Google Scholar 

  52. F. Cui, X. Geng, B. Robinson, T. King, K. Lee, M.C. Boufadel, Oil droplet dispersion under a deep-water plunging breaker: experimental measurement and numerical modeling. J. Mar. Sci. Eng. 8, 4 (2020)

    Article  Google Scholar 

  53. T. Matsoukas, Thermodynamics beyond molecules: statistical thermodynamics of probability distributions. Entropy 21, 9 (2019)

    Article  MathSciNet  Google Scholar 

  54. W.G. Madden, E.D. Glandt, Distribution functions for fluids in random media. J. Stat. Phys. 51, 3 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. Widom, Statistical Mechanics: A Concise Introduction for Chemists (Cambridge University Press, 2004)

    Google Scholar 

  56. D. Williams, Probability with Martingales (Cambridge University Press, 1991)

    Book  MATH  Google Scholar 

  57. R. Faillettaz, C.B. Paris, A.C. Vaz, N. Perlin, Z.M. Aman, M. Schlüter, S.A. Murawski, The choice of droplet size probability distribution function for oil spill modeling is not trivial. Mar. Pollut. Bull. 163, 111920 (2021)

    Article  Google Scholar 

  58. M.T. Rahni, S.A. Taleghani, M. Sheikholeslam, G. Ahmadi, Computational simulation of water removal from a flat plate, using surface acoustic waves. Wave Motion 111, 102867 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shams Taleghani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams Taleghani, A., Sheikholeslam Noori, M. Numerical investigation of coalescence phenomena, affected by surface acoustic waves. Eur. Phys. J. Plus 137, 975 (2022). https://doi.org/10.1140/epjp/s13360-022-03175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03175-8

Navigation