Skip to main content
Log in

ESR spectroscopy study of radicals induced by gamma radiation in oleaster (Elaeagnus Angustifolia L.) fruits

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the electron spin resonance (ESR) technique, the kinetic and spectroscopic properties of free radicals generated by gamma radiation in oleaster (Elaeagnus angustifolia L.) fruits were investigated. For ESR measurements, skin parts of unirradiated (Group-A) and gamma-irradiated (Group-B) oleaster fruits were used. While the ESR spectrum of the Group-A samples consisted of a singlet signal at g = 2.0032 ± 0.0002, two cellulosic signal components were observed in the low (g = 2.0205 ± 0.0002) and high (g = 1.9861 ± 0.0002) field regions of this singlet signal in Group-B sample. A model containing three free radicals was used to determine spectroscopic parameters of radiation-specific radicals. The stability at room temperature and detailed kinetic behaviors of the radiation-specific signals were investigated. Results show that gamma irradiation induces free radicals in oleaster fruits, and these radicals can be used to identify gamma irradiation process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. N. Ersoy, I.H. Kalyoncu, A.Y. Elidemir, I. Tolay, Int J Agr Biol Eng. (2013). https://doi.org/10.5281/zenodo.1070127

  2. P.H. Davis, Flora of Turkey and the East Aegean Islands. Vol. 7. (Edinburgh, Scotland, 1978), pp. 533–534

  3. F.A. Ayaz, E. Bertoft, J Food Compost Anal. (2001). https://doi.org/10.1006/jfca.2001.1004

    Article  Google Scholar 

  4. T.I. Kiseleva, L.N. Chindyaeva, Contemp Probl Ecol. (2011). https://doi.org/10.1134/S1995425511020147

    Article  Google Scholar 

  5. M.C. D’Oca, A. Bartolotta, Radiat Meas. (2011). https://doi.org/10.1016/j.radmeas.2011.03.027

    Article  Google Scholar 

  6. IAEA, Dosimetry for Food Irradiation (International Atomic Energy Agency, Vienna, 2002)

    Google Scholar 

  7. J.J. Raffi, J.P.L. Agnel, Radiat Phys Chem. (1989). https://doi.org/10.1016/1359-0197(89)90325-1

    Article  Google Scholar 

  8. R.A. Molins, Food Irradiation: Principles and Applications (Wiley, New York, 2001), p.350

    Google Scholar 

  9. C.N. Negut, M. Curtubinis, in Electron Spin Resonance in Food Science ed. By A.K. Shukla, (Academic Press, London, 2017), pp. 17–32

  10. EN 1786, Detection of irradiated food containing bone: analysis by electron paramagnetic resonance. European Committee for Standardization (CEN), (Belgium, 1997)

  11. EN 1787, Foodstuff-detection of irradiated food containing cellulose: analysis by EPR. European Committee for Standardization (CEN), (Belgium, 2000)

  12. EN 13708, Detection of irradiated food containing crystalline sugar: analysis by EPR. European Committee for Standardization (CEN), (Belgium, 2001)

  13. M. Ukai, Y. Shimoyama, Appl Magn Reson. (2003). https://doi.org/10.1007/BF03166674

    Article  Google Scholar 

  14. M. Ukai, Y. Shimoyama, Radiat Phys Chem. (2004). https://doi.org/10.1016/j.radphyschem.2004.03.071

    Article  Google Scholar 

  15. M. Polovka, V. Brezova, A. Stasko, M. Mazur, M. Sujah, P. Simko, Radiat Phys Chem. (2006). https://doi.org/10.1016/j.radphyschem.2005.07.007

    Article  Google Scholar 

  16. N.D. Yordanov, V. Gancheva, Appl Radiat Isot. (2000). https://doi.org/10.1016/S0969-8043(99)00075-5

    Article  Google Scholar 

  17. N.D. Yordanov, O. Lagunov, K. Dimov, Radiat Phys Chem. (2009). https://doi.org/10.1016/j.radphyschem.2008.12.001

    Article  Google Scholar 

  18. S.T. Çam, B. Engin, Radiat Phys Chem. (2010). https://doi.org/10.1016/j.radphyschem.2009.09.004

    Article  Google Scholar 

  19. U. Paksu, C. Aydaş, Ü.R. Yüce, T. Aydın, M. Polat, B. Engin, Radiat Environ Bioph. (2013). https://doi.org/10.1007/s00411-013-0465-x

    Article  Google Scholar 

  20. H. Kameya, M. Ukai, Y. Shimoyama, Radiat Phys Chem. (2013). https://doi.org/10.1016/j.radphyschem.2012.05.005

    Article  Google Scholar 

  21. S.T. Çam, C. Aydaş, B. Engin, Ü.R. Yüce, T. Aydın, M. Polat, Radiat. Eff. Defects Solids (2012). https://doi.org/10.1080/10420150.2012.666243

    Article  Google Scholar 

  22. M. Polat, M. Korkmaz, Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2007.08.059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Paksu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paksu, U., Engin, B. & Sayın, Ü. ESR spectroscopy study of radicals induced by gamma radiation in oleaster (Elaeagnus Angustifolia L.) fruits. Eur. Phys. J. Plus 137, 941 (2022). https://doi.org/10.1140/epjp/s13360-022-03155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03155-y

Navigation