Skip to main content
Log in

Influence of BaTiO3 on physical and optical studies of Na2B4O7–MoO3–TeO2 glasses reinforced with vanadium ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Glasses with the compositions xBaTiO3–(78−x)Na2B4O7–10MoO3–10TeO2–2V2O5 with (x = 0, 5, 10, 15 and 20 mol%) named as [BNMTV-1(x = 0), BNMTV-2(x = 5), BNMTV-3(x = 10), BNMTV-4(x = 15) and BNMTV-5(x = 20)], were prepared by melt-quenching process. BaTiO3 gradually replaces Na2B4O7, while the other elements remain unchanged. To prove the amorphous phase, XRD measurements were taken. The density of the produced glasses grows as the amount of BaTiO3 increases while the molar volume declines. The crystal density of BaTiO3 is 6.023 gm/cc, and it is much greater than the Na2B4O7 crystal density (2.367 gm/cc) that might be the reason for the density increment. Highly denser BNMTV-5 is most suitable for radiation shielding applications. Refractive indices decline from 2.405 [BNMTV-1] to 2.383 [BNMTV-5] glass sample. All the glass samples have high refractive index values suitable for core material in optical fibres. BNMTV-1 is the proper glass for the core material in optical fibre. The decrease in molar volume is supplemented by the decrease of boron–boron separation and interatomic distance with the increase of BaTiO3 concentration. The polaron radius and field strength are showing opposite behaviour, as expected. From optical absorption spectra, the optical energy gap Eopt and Urbach energy values were estimated. On increasing BaTiO3, Eopt values are slightly increasing. From the optical bandgap (Eopt) values the refractive index, dielectric constant, etc., were evaluated. FTIR spectra indicated the presence of various molybdate MoO4, MoO6 and Mo2O7 groups along with triangular BO3 and BO4 tetrahedra. Raman spectra also confirmed the presence of molybdate groups along with various borate units. The EPR spectra revealed the hyperfine structure of VO2+ ions and these ions are in tetragonally compressed octahedral site with C4v symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. M.S. Al-Assiri, M.M. El-Desoky, A. Al-Hajry, A. Al-Shahrani, A.M. Al-Mogeeth, A.A. Bahgat, Study of nanostructural behavior and transport properties of BaTiO3 doped vanadate glasses and glass–ceramics dispersed with ferroelectric nanocrystals. Phys. B 404, 1437–1445 (2009). https://doi.org/10.1016/j.physb.2008.12.041

    Article  ADS  Google Scholar 

  2. N.A. Szreder, P. Kosiorek, K. Kasaik, J. Karczewski, M. Gazda, R.J. Barczynski, Nanostructure and dielectric behavior of vanadate glasses containing BaTiO3. J. Non-Cryst. Sol 401, 202–206 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.01.008

    Article  ADS  Google Scholar 

  3. A.A. Bahgat, T.M. Kamel, Possible observation of a glassy ferroelectric: Bi1.8Pb0.3Sr2Ca2Cu2.8K0.2Oz. Phys. Rev. B 63, 012101 (2001). https://doi.org/10.1103/PhysRevB.63.012101

    Article  ADS  Google Scholar 

  4. A.A. Bahgat, T.M. Kamel, Study of ferro electricity in glassy Bi 1.8 Pb 0.3 Sr 2 Ca2Cu3−xKxOz. Ferroelectrics 271, 39 (2002). https://doi.org/10.1080/00150190211520

    Article  Google Scholar 

  5. D.K. Manisha Sadhukhan, B.K. Modak, Chaudhuri, Study of microstructuralbehavior and nonadiabatic small polaron hopping conduction in BaTiO3 doped lead-vanadate glass and glass-ceramics dispersed with ferroelectric nanocrystals. J. Appl. Phys. (1999). https://doi.org/10.1063/1.369705

    Article  Google Scholar 

  6. Y.B. Saddeek, M.H. Hesham, K.C. Zakaly, S.A.M. Sekhar, T.A. Issa, Md. Ali Badawi, Shareefuddin, Investigations of mechanical and radiation shielding properties of BaTiO3-modifed cadmium alkali borate glass. Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05413-3

    Article  Google Scholar 

  7. T. Sravan Rao, N.V. Prasad, Md. Shareefuddin, G. Prasad, Synthesis and characterization of bismuth borate barium titanate glass ceramics. Indian J. Sci. Technol. 15(17), 839–849 (2022). https://doi.org/10.17485/ijst/v15i17.134

    Article  Google Scholar 

  8. K. Chandra Sekhar, M. Shareefuddin, A. El-Denglawey, Y.B. Saddeek, Structural and optical properties of BaTiO3 modified cadmium alkali borate glasses. Phys. Scr. 97, 035704 (2022). https://doi.org/10.1088/1402-4896/ac53c7

    Article  ADS  Google Scholar 

  9. S. Thakur, V. Thakur, A. Kaur, L. Sing, Temperature dependent electrical transport behavior of (100–x)Bi2O3−x(BaTiO3) glass system. Solid State Sci. 121, 106749 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106749

    Article  Google Scholar 

  10. S.Y. Marzouk, M.A. Azooz, H.M. Elsaghier, N.A. Zedan, W. Abbas, Structural and optical properties of barium titanium borate glasses doped with ytterbium. J. Mater. Sci. Mater. Electron (2022). https://doi.org/10.1007/s10854-022-08665-0

    Article  Google Scholar 

  11. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A. Mossad Ali, M.A. Sayed, Elastic, optical and structural features of wide range of CdO-Na2B4O7 glasses. Mater. Res. Express 5(6), 065204 (2018). https://doi.org/10.1088/2053-1591/aac93f

    Article  ADS  Google Scholar 

  12. G. Sangeetha, K. Chandra Sekhar, A. Hameed, G. Ramadevudu, M. Narasimha Chary, M. Shareefuddin, Influence of CaO on the structure of zinc sodium tetraborate glasses containing Cu2+ ions. J. Non-Cryst. Sol. 563, 120784 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120784

    Article  Google Scholar 

  13. I. Ulla, I. Khan, S.K. Shah, S.A. Khattak, M. Shoaib, J. Kaewkhao, T. Ahmad, E. Ahmed, G. Rooh, A. Khan, Luminescence properties of Sm3+ doped Na2B4O7 glasses for lighting application. J. Lumin. 230, 117700 (2021). https://doi.org/10.1016/j.jlumin.2020.117700

    Article  Google Scholar 

  14. P. Naresh, G. NagaRaju, M. Srinivas Reddy, T. Venkatappa Rao, I.V. Kityk, N. Veeraiah, Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels. J. Mater. Sci. Mater. Electron 25, 4902–4915 (2014). https://doi.org/10.1007/s10854-014-2251-1

    Article  Google Scholar 

  15. N. Rajya Lakshmi, S. Cole, Influence of MoO3 ions on spectroscopic properties of B2O3-ZnF2-CaF2-Al2O3 oxy fluoride glasses. Mater. Today Proc. 5, 26346–26355 (2018). https://doi.org/10.1016/j.matpr.2018.08.086

    Article  Google Scholar 

  16. A.M. Issa Shams, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Results Phys. 13, 102165 (2019). https://doi.org/10.1016/j.rinp.2019.102165

    Article  Google Scholar 

  17. Z.A. Alrowaili, A.M. Ali, M. Ateyyah, M.S. Al-Baradi, E.A. Abdel Wahab, K.S. Shaaban, A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt. Quant. Electr. 54, 88 (2022). https://doi.org/10.1007/s11082-021-03447-0

    Article  Google Scholar 

  18. A.A. El-Moneim, R. El-Mallawany, Y.B. Saddeek, Nb2O5–TeO2 and Nb2O5–Li2O–TeO2 glasses: evaluation of elastic properties. J. Non-Cryst. Solids 575, 121229 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121229

    Article  Google Scholar 

  19. A. El-Denglawey, S.A.M. Issa, Y.B. Saddeek, W. Elshami, M.A. Sayed, R. Elsaman, N. Tarhan, H.O. Tekin, Mechanical, structural and nuclear radiation shielding competencies of some tellurite glasses reinforced with molybdenum trioxide. Phys. Scr. 96, 045702 (2021). https://doi.org/10.1088/1402-4896/abe1f8

    Article  ADS  Google Scholar 

  20. A.M.A. Mostafa, S.A.M. Issa, H.M.H. Zakaly, M.H.M. Zaid, H.O. Tekin, K.A. Matori, H.A.A. Sidek, R. Elsaman, The influence of heavy elements on the ionizing radiation shielding efficiency and elastic properties of some tellurite glasses: theoretical investigation. Results Phys. 19, 103496 (2020). https://doi.org/10.1016/j.rinp.2020.103496

    Article  Google Scholar 

  21. K. Chandra Sekhar, M. Raheem, N. Narsimlu, U. Deshpande, V.G. Sathe, Md. Shareefuddin, The effect of the addition of CaF2 and PbF2 on boro-tellurite glasses doped with chromium ions. Mater. Res. Express 6, 125206 (2019). https://doi.org/10.1088/2053-1591/ab619f

    Article  Google Scholar 

  22. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system. Ceram. Int. 4, 727305–727315 (2021). https://doi.org/10.1016/j.ceramint.2021.06.152

    Article  Google Scholar 

  23. K. Chandra Sekhar, N. Narsimlu, M.S. Al-Buriahi, H.A. Yakout, I.O. Olarinoye, Md. Sultan Alomairy, Shareefuddin, Synthesis, optical, and radiation attenuation properties of CaF2-TeO2-Na2B4O7-CuO glass system for advanced shielding applications. Eur. Phys. J. Plus 136, 903 (2021). https://doi.org/10.1140/epjp/s13360-021-01906-x

    Article  Google Scholar 

  24. S. Vedavyas, K. Chandra Sekhar, S. Ahammad, G. Ramadevudu, M. Narasimha Chary, Md. Shareefuddin, Physical and structural studies of cadmium lead boro-tellurite glasses doped with Cu2+ ions. J. Mater. Sci. Mater. Electron. 32, 3083 (2021). https://doi.org/10.1007/s10854-020-05058-z

    Article  Google Scholar 

  25. A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  ADS  Google Scholar 

  26. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram Inter 40, 14477–14481 (2014). https://doi.org/10.1016/j.ceramint.2014.07.006

    Article  Google Scholar 

  27. V. Thakur, A. Singh, R. Punia, M. Kaur, L. Singh, Effect of BaTiO3 on the structural and optical properties of lithium borate glasses. Ceram Int. 41, 10957 (2015). https://doi.org/10.1016/j.ceramint.2015.05.039

    Article  Google Scholar 

  28. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  ADS  Google Scholar 

  29. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 736 (1996). https://doi.org/10.1063/1.360962

    Article  Google Scholar 

  30. V. Dimitrov, T. Komatshu, Classification of simple oxides: a palarizability approach. J. Solid State Chem. 163, 100 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  ADS  Google Scholar 

  31. J.A. Duffy, Chemical bonding in the oxides of the elements: a new appraisal. J. Solid State Chem. 62, 145 (1986). https://doi.org/10.1016/0022-4596(86)90225-2

    Article  ADS  Google Scholar 

  32. K. Herzfeld, On atomic properties which make an element a metal. Phys. Rev. 29, 701 (1927). https://doi.org/10.1103/PhysRev.29.701

    Article  ADS  Google Scholar 

  33. S. Rajesham, K. Chandra Sekhar, Md. Shareefuddin, J. Siva Kumar, Synthesis, physical, optical and structural studies of B2O3–CdO–Al2O3–PbF2 modified with MoO3 ions. Opt. Quan. Electron. 54, 470 (2022). https://doi.org/10.1007/s11082-022-03874-7

    Article  Google Scholar 

  34. S. Ahammed, K. Chandra Sekhar, M. Narasimha Chary, M. Shareefuddin, The role ofsodium fluoride on CdO–B2O3 glasses doped with chromium ions. Appl. Phys. A 125, 882 (2019). https://doi.org/10.1007/s00339-019-3181-9

    Article  ADS  Google Scholar 

  35. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non Cryst Solids 355, 348 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.12.008

    Article  ADS  Google Scholar 

  36. B. Aktas, A. Acikgoz, D. Yilmaz, S. Yalcin, K. Dogru, N. Yorulmaz, The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. J. Nucl. Mater. 563, 153619 (2022). https://doi.org/10.1016/j.jnucmat.2022.153619

    Article  Google Scholar 

  37. Y.B. Saddeek, A.M. Abousehly, S.I. Hussien, Synthesis and several features of the Na2O–B2O3–Bi2O3–MoO3 glasses. J. Phys. D Appl. Phys. 40, 4674–4681 (2007). https://doi.org/10.1088/0022-3727/40/15/048

    Article  ADS  Google Scholar 

  38. M. Rada, S. Rada, P. Pascuta, E. Culea, Structural properties of molybdenum-lead-borate glasses. Spectrochim. Acta Part A (2010). https://doi.org/10.1016/j.saa.2010.08.014

    Article  Google Scholar 

  39. P. Naresh, N. Narsimlu, Ch. Srinivas, Md. Shareefuddin, K. Siva Kumar, Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J. Non-Cryst. Solids 549, 120361 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120361

    Article  Google Scholar 

  40. G. Chandrakiram, A. Kumar Yadav, A. Kumar Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram 2012, 428497 (2012). https://doi.org/10.5402/2012/428497

    Article  Google Scholar 

  41. B. Ashok, K.C. Sekhar, B.S. Chary, G. Ramadevudu, M N Chary and Md Shareefuddin, physical and structural study of Al2O3–NaBr–B2O3–CuO glasses. Indian J Phys (2021). https://doi.org/10.1007/s12648-021-02048-7

    Article  Google Scholar 

  42. K. Chandra Sekhar, A. Hameed, V.G. Sathe, M. Narasimha Chary, Md. Shareefuddin, Physical, optical and structural studies of copper-doped lead oxy chloro borate glasses. Bull. Mater. Sci. 41, 79 (2018). https://doi.org/10.1007/s12034-018-1604-4

    Article  Google Scholar 

  43. S. Thakur, V. Thakur, A. Kaur, L. Singh, Synthesis and the study of structural, thermal and optical properties of (100–x)Bi2O3x(BaO–TiO2) glass system. Optik 223, 165646 (2020). https://doi.org/10.1016/j.ijleo.2020.165646

    Article  ADS  Google Scholar 

  44. A. Kaur, A. Khanna, F. González, C. Pesquera, B. Chenc, Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. J. Non-Cryst. Solids 444, 1–10 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.033

    Article  ADS  Google Scholar 

  45. T. Sekiya, N. Mochida, S. Ogawa, Structural study of MoO3–TeO2 glasses. J. Non-Cryst. Solids 185, 135–144 (1995). https://doi.org/10.1016/0022-3093(94)00667-9

    Article  ADS  Google Scholar 

  46. D. Kivelson, S.-K. Lee, ESR studies and the electronic structure of vanadyl ion complexes. J. Chem. Phys. 41, 1896–1903 (1964). https://doi.org/10.1063/1.1726180

    Article  ADS  Google Scholar 

  47. N. Figgis, Introd. Ligand Fields (1966). https://doi.org/10.1002/bbpc.19660700841

    Article  Google Scholar 

  48. M.R. Ahmed, K. Chandra Sekhar, A. Sheik, G.V. Sathe, Z.A. Alrowaili, M. Amami, I.O. Olarinoye, M.S. Al-Buriahi, B.T. Tonguc, Md. Shareefuddin, Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: a focus on the role of SrO/Al2O3 substitution. Ceram. Int. 48, 2124–2137 (2022). https://doi.org/10.1016/j.ceramint.2021.09.301

    Article  Google Scholar 

  49. K. Chandra Sekhar, A. Hameed, B. Ashok, M. Narasimha Chary, M. Shareefuddin, Electron paramagnetic resonance study of vanadium doped lead halo borate glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 58(2), 68–72 (2017). https://doi.org/10.13036/17533562.58.2.042

    Article  Google Scholar 

  50. Md. Shareefuddin, Md. Jamal, G. Ramadevudu, M. Lakshmipati Rao, M. Narasimha Chary, Electron paramagnetic resonance spectra of VO2 ions in NaI-Na2O–K2O–B2O3 mixed alkali glasses. J. Non-Cryst. Solids 255, 228–232 (1999). https://doi.org/10.1016/S0022-3093(99)00363-4

    Article  ADS  Google Scholar 

  51. J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and appliCations (Wiley, New York, 1994), p.498

    Google Scholar 

  52. N.W. Aschcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, London, 2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Head, Department of Physics, Osmania University, for providing laboratory facilities. The authors Arukula Balakrishna and B. Srikantha Chary would like to thank the CSIR, New Delhi, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arukula Balakrishna.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishna, A., Chary, B.S., Sekhar, K.C. et al. Influence of BaTiO3 on physical and optical studies of Na2B4O7–MoO3–TeO2 glasses reinforced with vanadium ions. Eur. Phys. J. Plus 137, 915 (2022). https://doi.org/10.1140/epjp/s13360-022-03123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03123-6

Navigation