Skip to main content
Log in

Early detection of synchrony in coupled oscillator model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the applicability of an early warning index while studying the transitions to complete and generalized synchronizations in the coupled oscillator models using an unconventional system parameter and the coupling strength as the required control parameters. The coupled oscillator models are widely used and well-documented models for studying various aspects of nature. However, the early warning index used in this paper is an explicit function of the mutual information of the coupled oscillators and reaches two different values before the interacting oscillators yield complete and generalized synchronizations. The transitions to synchrony using the unconventional control parameter are associated with a transition to periodic dynamics of the individual oscillators from their initial chaotic dynamics. Besides, when we use the coupling strength as a control parameter, the interacting oscillator exhibits chaotic dynamics during the synchronizations. Our analysis mainly involves different examples of two low-dimensional oscillators. Finally, we extend our study to a network of interacting oscillators. The applicability of the early detection index is verified in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.T. Winfree, The Geometry of Biological Time, 1st edn. (Springer Press, New York, 2001)

    Book  MATH  Google Scholar 

  2. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and Patterns, 1st edn. (Springer Press, New York, 2003)

    Book  MATH  Google Scholar 

  3. A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex, 1st edn. (Springer Press, Berlin, 2008)

    MATH  Google Scholar 

  4. G. Feingold, I. Koren, A model of coupled oscillators applied to the aerosol-cloud-precipitation system. Nonlin. Processes Geophys. 20, 1011 (2013)

    Article  ADS  Google Scholar 

  5. Y. Muraki, Application of a coupled harmonic oscillator model to solar activity and El Niño phenomena. J. Astron. Space Sci. 35, 75 (2018)

    ADS  MathSciNet  Google Scholar 

  6. C.K.C. Go, J.T. Maquiling, Using coupled harmonic oscillators to model some greenhouse gas molecules. AIP Conf. Proc. 1263, 219 (2010)

    Article  ADS  Google Scholar 

  7. A.J. Muraki et al., Coupled ocean-atmosphere modeling and predictions. J. Mar. Res. 75, 361 (2017)

    Article  Google Scholar 

  8. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, 1st edn. (Cambridge University Press, New York, 2001)

    Book  MATH  Google Scholar 

  9. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order, 1st edn. (Hyperion Press, New York, 2003)

    Google Scholar 

  11. T. Ma, S. Wang, Bifurcation Theory and Applications, 1st edn. (World Scientific Press, Singapore, 2005)

    Book  MATH  Google Scholar 

  12. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. (CRC Press, India, 2014)

    MATH  Google Scholar 

  13. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy, Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7, 520 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Eroglu, J.S.W. Lamb, T. Pereira, Synchronisation of chaos and its applications. Contemp. Phys. 58, 207 (2017)

    Article  ADS  Google Scholar 

  17. A. Ghosh, P. Godara, S. Chakraborty, Understanding transient uncoupling induced synchronization through modified dynamic coupling. Chaos 28, 053112 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Ghosh, T. Shah, S. Chakraborty, Occasional uncoupling overcomes measure desynchronization. Chaos 28, 123113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Sur, A. Ghosh, Quantum counterpart of measure synchronization: a study on a pair of Harper systems. Phys. Lett. A 384, 126176 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Ghosh, S. Chakraborty, Comprehending deterministic and stochastic occasional uncoupling synchronizations through each other. Eur. Phys. J. B 93, 113 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines (Operational Experience, Fundamental Mechanisms and Modeling), volume 210. Progress in Astronautics and Aeronautics, AIAA, (2005)

  22. F.E.C. Culick, Unsteady motions in combustion chambers for propulsion systems. Technical report, AGARDograph, NATO/RTO-AG-AVT-039, (2006)

  23. S.C. Fisher, S.A. Rahman, NASA History Division. Remembering the Giants: Apollo Rocket Propulsion Development. Monographs in aerospace history. National Aeronautics and Space Administration, NASA History Division, Office of External Relations, (2009)

  24. R.I. Sujith, S.A. Pawar, Thermoacoustic Instability: A Complex Systems Perspective (Springer, Switzerland, 2021)

    Book  Google Scholar 

  25. L.G. Dominguez, R.A. Wennberg, W. Gaetz, D. Cheyne, O.C. Snead, J.L.P. Velazquez, Enhanced synchrony in epileptiform activity? local versus distant phase synchronization in generalized seizures. J. Neurosci. 25, 8077 (2005)

    Article  Google Scholar 

  26. C. Hammond, H. Bergman, P. Brown, Pathological synchronization in parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357 (2007)

    Article  Google Scholar 

  27. L.L. Rubchinsky, C. Park, R.M. Worth, Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 68, 329 (2012)

    Article  Google Scholar 

  28. S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Theoretical mechanics: Crowd synchrony on the Millennium Bridge. Nature 438, 43 (2005)

    Article  ADS  Google Scholar 

  29. A. Ghosh, S.A. Pawar, R.I. Sujith, Anticipating synchrony in dynamical systems using information theory. Chaos 32, 031103 (2022)

    Article  ADS  Google Scholar 

  30. M.C. Romano, M. Thiel, J. Kurths, Generalized synchronization indices based on recurrence in phase space. AIP Conf. Proc. 742, 330 (2004)

    Article  ADS  Google Scholar 

  31. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J.L. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71, 466 (2005)

    Article  ADS  Google Scholar 

  32. A. Ghosh, R.I. Sujith, Emergence of order from chaos: a phenomenological model of coupled oscillators. Chaos Solitons Fractals 141, 110334 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Hampton, D.H. Zanette, Measure synchronization in coupled Hamiltonian systems. Phys. Rev. Lett. 83, 2179 (1999)

    Article  ADS  Google Scholar 

  34. X. Wang, M. Zhan, C.-H. Lai, H. Gang, Measure synchronization in coupled \({\varphi }^{4}\) Hamiltonian systems. Phys. Rev. E 67, 066215 (2003)

    Article  ADS  Google Scholar 

  35. D.S. Gupta, A. Bahmer, Increase in mutual information during interaction with the environment contributes to perception. Entropy 21, 365 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, R. Fazio, Mutual information as an order parameter for quantum synchronization. Phys. Rev. A 91, 012301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Wilmer, M. de Lussanet, M. Lappe, Time-delayed mutual information of the phase as a measure of functional connectivity. PLoS ONE 7, e44633 (2012)

    Article  ADS  Google Scholar 

  38. H. Fan, L. Kong, Y. Lai, X. Wang, Anticipating synchronization with machine learning. Phys. Rev. Res. 3, 023237 (2021)

    Article  Google Scholar 

  39. S. Mondal, S.A. Pawar, R.I. Sujith, Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos 27, 103119 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Raaj, J. Venkatramani, S. Mondal, Synchronization of pitch and plunge motions during intermittency route to aeroelastic flutter. Chaos 29, 043129 (2019)

    Article  ADS  MATH  Google Scholar 

  41. P. Yu, A.B. Gumel, Bifurcation and stability analyses for a coupled Brusselator model. J. Sound Vib. 244, 795 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M.D. Nurujjaman, A.N. Sekar Iyengar, Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas. Pramana-J. Phys. 67, 299 (2006)

    Article  ADS  Google Scholar 

  43. M. Nurujjaman, R. Narayanan, A.N. Sekar Iyengar, Parametric investigation of nonlinear fluctuations in a dc glow discharge plasma. Chaos 17, 043121 (2007)

    Article  ADS  MATH  Google Scholar 

  44. L.H. Nguyen, K. Hong, Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model. 37, 2460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Seshadri, R.I. Sujith, A bifurcation giving birth to order in an impulsively driven complex system. Chaos 26, 083103 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57, 397 (1976)

    Article  ADS  MATH  Google Scholar 

  48. G. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurc. Chaos 09, 1465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042 (1999)

    Article  ADS  Google Scholar 

  50. T.M. Cover, J.A. Thomas, Elements of Information Theory, 1st edn. (Wiley-Interscience Press, London, 2006)

    MATH  Google Scholar 

  51. J.C. Sprott, Chaos and Time-Series Analysis, 1st edn. (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  52. H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53, 4528 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. R. I. Sujith and Dr. S. Sur for several fruitful discussions and the anonymous referees for their constructive criticisms. The author gratefully acknowledges the Institute Post-Doctoral Fellowship of the Indian Institute of Technology Madras, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Ghosh.

Appendices

Appendix

A. Coupled Chen oscillators

In this section, we consider the example of mutually coupled Chen [48] oscillators. The explicit form of the equations of motion is given by:

$$\begin{aligned} \frac{{\text{d}}{x}_1}{{\text{d}}t}= a(y_1 - x_1), \end{aligned}$$
(13a)
$$\begin{aligned} \frac{{\text{d}}{y}_1}{{\text{d}}t}= (c-a)x_1 -x_1 z_1 + cy_1 + \alpha (y_2-y_1), \end{aligned}$$
(13b)
$$\begin{aligned} \frac{{\text{d}}{z}_1}{{\text{d}}t}= y_1 x_1 - bz_1, \end{aligned}$$
(13c)
$$\begin{aligned} \frac{{\text{d}}{x}_2}{{\text{d}}t}= a(y_2 - x_2), \end{aligned}$$
(13d)
$$\begin{aligned} \frac{{\text{d}}{y}_2}{{\text{d}}t}= (c-a)x_2 -x_2 z_2 + cy_2 + \alpha (y_1-y_2), \end{aligned}$$
(13e)
$$\begin{aligned} \frac{{\text{d}}{z}_2}{{\text{d}}t}= y_2 x_2 - bz_2, \end{aligned}$$
(13f)

with \(a=35\), \(b = 3\), and \(c = 28\). Here, we have coupled the y-coordinates of the interacting oscillators. In order to study the transition to complete synchrony, the coupling strength is chosen as a control parameter. Also, we have calculated the maximum conditional Lyapunov exponent (\(\lambda ^{\bot }_{\mathrm{max}}\)) [14] of Eq. 13 for different values of \(\alpha \). By definition, the negativity of \(\lambda ^{\bot }_{\mathrm{max}}\) implies the complete synchronization state. The maximum conditional Lyapunov exponent is a suitable measure to detect the complete synchronization between two diffusively coupled identical oscillators, where the explicit form of equations of motion is available.

Fig. 11
figure 11

Early detection of complete synchrony in coupled Chen oscillators: a The maximum conditional Lyapunov exponent (\(\lambda ^{\bot }_{\mathrm{max}}\)) is plotted as a function of the coupling strength (\(\alpha \)). \(\lambda ^{\bot }_{\mathrm{max}}\) becomes negative at \(\alpha = 2.14\). The horizontal gray dashed-line corresponds to \(\lambda ^{\bot }_{\mathrm{max} }= 0\). b The early detection index (R) is plotted as a function of the control parameter \(\alpha \). R reaches zero at \(\alpha \simeq 2.1\) and saturates before the coupled oscillators (Eq. 13) yield the generalized synchronization state. The vertical blue dashed-line is drawn at \(\alpha = 2.1\)

In analysis, the initial condition to integrate Eq. 13 is chosen as (− 10, 0, 37, − 10.1, 0.1, 37.1). The maximum conditional Lyapunov exponent becomes negative for \(\alpha \ge 2.14\) (Fig. 11a). Hence, the coupled Chen oscillators yield the complete synchronized state at \(\alpha = 2.14\). Besides, Fig. 11b depicts that R reaches zero at \(\alpha = 2.10\) and saturates. We use the coordinates \(x_1(t)\) and \(x_2(t)\) to calculate R at each \(\alpha \).

B. Coupled Rössler oscillators with noise

Now, the example of two coupled Rössler oscillators is considered in the presence of noise. The explicit form of the coupled oscillators are as follow:

$$\begin{aligned} \frac{{\text{d}}{x}_{1,2}}{{\text{d}}t}= -y_{1,2} - z_{1,2} + \alpha (x_{2,1} - x_{1,2}) + D \eta (t), \end{aligned}$$
(14a)
$$\begin{aligned} \frac{{\text{d}}{y}_{1,2}}{{\text{d}}t}= x_{1,2} + 0.2 y_{1,2}, \end{aligned}$$
(14b)
$$\begin{aligned} \frac{{\text{d}}{z}_{1,2}}{{\text{d}}t}= 0.2 + z_{1,2} (x_{1,2} - 5.7). \end{aligned}$$
(14c)

We introduce the noise term in Eq. 14a. Here, D represents the noise amplitude and \(\eta (t)\) is adopted from a Gaussian distribution (of zero mean and unit variance) randomly, i.e., \( \left\langle \eta (t) \eta (t') \right\rangle = \delta (t-t')\).

The initial condition for Eq. 14 is chosen as (− 9, 0, 0,   9.1, 0.1, 0). The maximum conditional Lyapunov exponent (\(\lambda ^{\bot }_{\mathrm{max}}\)) of Eq. 14 with \(D = 0\) becomes negative at \(\alpha \simeq 0.11\) (Fig. 12a). It implies that coupled Rössler oscillators (Eq. 14) lead the complete synchronized state for \(\alpha \ge 0.11\) in the absence of noise (i.e., \(D = 0\)). Figure 12b depicts the variations of R as a function of \(\alpha \) at \(D = 1 \times 10^{-5}\). For a fixed value of \(\alpha \), the plotted R in Fig. 12b is the average of all R values calculated over 50 realizations of the noise \(\eta (t)\). R reaches a small number at \(\alpha \simeq 0.09\) and almost saturates. Therefore, Fig. 12 helps to conclude that the applicability of R is robust in the presence of noise.

Fig. 12
figure 12

Robustness of the early detection index in the presence of noise: a The maximum conditional Lyapunov exponent (\(\lambda ^{\bot }_{\mathrm{max}}\)) becomes negative for \(\alpha \ge 1.1\). The horizontal gray dashed-lines corresponds to \(\lambda ^{\bot }_{\mathrm{max}} = 0\). b The early detection index (R) is plotted as a function of the control parameter \(\alpha \) in the presence of noise with noise strength \(D = 1 \times 10^{-5}\). R reaches a nonzero small number and saturates before the coupled oscillators (Eq. 15) yield the complete synchronization state. The vertical blue dashed-line is drawn at \(\alpha = 0.09\)

C. Network of Rössler oscillators

Until now, we have studied different examples of two coupled oscillators. This section extends our study to a network of interacting oscillators. We consider a ring of N mutually coupled Rössler oscillators. Following is the equations of motion of the \(i^{\mathrm{th}}\) oscillator:

$$\begin{aligned} \frac{{\text{d}}{x}_i}{{\text{d}}t}= -y_i - z_i + \alpha (x_{i+1} + x_{i-1} - 2x_i), \end{aligned}$$
(15a)
$$\begin{aligned} \frac{{\text{d}}{y}_i}{{\text{d}}t}= x_i + 0.2 y_i, \end{aligned}$$
(15b)
$$\begin{aligned} \frac{{\text{d}}{z}_i}{{\text{d}}t}= 0.2 + z_i (x_i - 5.7), \end{aligned}$$
(15c)

where \(i = 1, 2, \ldots , N\), with \(x_{N+1} = x_1\) and \(x_{-1} = x_N\). Here, the coupling strength \(\alpha \) is the required control parameter, and we vary \(\alpha \) monotonically within the range [0, 0.5]. In analysis, we adopt \(N = 10\) and the initial conditions of interacting 10 oscillators are chosen randomly from an uniform distribution with the boundaries \(-0.1\) and 0.1. The variation of \(\lambda ^{\bot }_{\mathrm{max}}\) as a function of \(\alpha \) infers that all 10 oscillators yield complete synchrony for \(\alpha \ge 0.41\) (Fig. 13). Besides, in Fig. 14, we have plotted the early detection index R using x-coordinates of the neighbor oscillators. An overall decreasing nature of R is detected in all cases and R saturates at zero in most cases. To this end, note that over this range of \(\alpha \) (i.e., \(\alpha \in [0, 0.5]\)), each interacting Rössler oscillator exhibits chaotic oscillation.

Fig. 13
figure 13

Transition to complete synchrony in a ring of coupled Rössler oscillators: The maximum conditional Lyapunov exponent (\(\lambda ^{\bot }_{\mathrm{max}}\)) of Eq. 15 is plotted as a function of the control parameter \(\alpha \), and \(\lambda ^{\bot }_{\mathrm{max}}\) becomes negative at \(\alpha = 0.41\). It implies that the coupled oscillators (Eq. 15) yield the complete synchronization state for \(\alpha \ge 0.41\). The horizontal gray dashed-line is drawn at \(\lambda ^{\bot }_{\mathrm{max}} = 0\)

Fig. 14
figure 14

Early detection of complete synchrony in a ring of coupled Rössler oscillators: The early detection index (R) is plotted as a function of the control parameter \(\alpha \) using the x-coordinates of the interacting oscillators. In most cases, R reaches zero and saturates before the coupled oscillators (Eq. 15) yield the complete synchronization state. The vertical red dashed-lines in all subplots are at \(\alpha = 0.41\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A. Early detection of synchrony in coupled oscillator model. Eur. Phys. J. Plus 137, 897 (2022). https://doi.org/10.1140/epjp/s13360-022-03122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03122-7

Navigation