Skip to main content
Log in

Far from equilibrium transport on TASEP with pockets

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate a geometric adaptation of a totally asymmetric simple exclusion process with open boundary conditions, where each site of a one-dimensional channel is connected to a lateral space (pocket). The number of particles that may be accommodated in each pocket is determined by its capacity q. The continuum mean-field approximation is deployed for the case \(q = 1\) where both lattice and pocket strictly follow the hard-core exclusion principle. In contrast, a probability mass function is utilized along with the mean-field theory to investigate the multiple-capacity case, where the pocket violates the hard-core exclusion principle. The effect of both finite and infinite reservoirs has been studied in the model. The explicit expression for particle density has been calculated, and the evolution of the phase diagram in \(\alpha -\beta \) parameter space obtained with respect to q and the attachment-detachment rates. In particular, the topology of the phase diagram is found to be unchanged in the neighborhood of \(q = 1\). Moreover, the competition between lattice and pocket for finite resources and the unequal Langmuir kinetics captures a phenomenon in the form of a back-and-forth transition. We have also investigated the limiting case \(q \rightarrow \infty \). The theoretically obtained phase boundaries and density profiles are validated through extensive Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. V. Belitsky, J. Krug, E.J. Neves, G. Schütz, A cellular automaton model for two-lane traffic. J. Stat. Phys. 103(5), 945–971 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Chou, K. Mallick, R.K. Zia, Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Prog. Phys. 74(11), 116601 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.B. Kolomeisky, Motor Proteins and Molecular Motors (CRC Press, Boca Raton, 2015)

    Book  Google Scholar 

  4. M.E. Foulaadvand, P. Maass, Phase transitions and optimal transport in stochastic roundabout traffic. Phys. Rev. E 94(1), 012304 (2016)

    Article  ADS  Google Scholar 

  5. D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. R.A. Blythe, M.R. Evans, Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Theor. 40(46), 333 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C.T. MacDonald, J.H. Gibbs, A.C. Pipkin, Kinetics of biopolymerization on nucleic acid templates. Biopolym. Orig. Res. Biomol. 6(1), 1–25 (1968)

    Article  Google Scholar 

  8. B. Derrida, An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301(1–3), 65–83 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Krug, Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67(14), 1882 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26(7), 1493 (1993)

    Article  ADS  MATH  Google Scholar 

  11. S. Muhuri, Jamming transition in a driven lattice gas. EPL (Europhys. Lett.) 106(2), 28001 (2014)

    Article  ADS  Google Scholar 

  12. C. Domb, Phase Transitions and Critical Phenomena (Elsevier, Amsterdam, 2000)

    MATH  Google Scholar 

  13. G. Schütz, E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1), 277–296 (1993)

    Article  ADS  MATH  Google Scholar 

  14. Y.-M. Yuan, R. Jiang, R. Wang, Q.-S. Wu, J.-Q. Zhang, Spontaneous symmetry breaking in totally asymmetric simple exclusion processes on two intersected lattices. J. Phys. A: Math. Theor. 41(3), 035003 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Parmeggiani, T. Franosch, E. Frey, Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90(8), 086601 (2003)

    Article  ADS  Google Scholar 

  16. A.B. Kolomeisky, G.M. Schütz, E.B. Kolomeisky, J.P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. Gen. 31(33), 6911 (1998)

    Article  ADS  MATH  Google Scholar 

  17. S. Klumpp, R. Lipowsky, Traffic of molecular motors through tube-like compartments. J. Stat. Phys. 113(1), 233–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Basu, D. Chowdhury, Traffic of interacting ribosomes: effects of single-machine mechanochemistry on protein synthesis. Phys. Rev. E 75(2), 021902 (2007)

    Article  ADS  Google Scholar 

  19. S. Katz, J.L. Lebowitz, H. Spohn, Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors. J. Stat. Phys. 34(3), 497–537 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Arita, P. Krapivsky, K. Mallick, Reply to “comment on ‘generalized exclusion processes: transport coefficients’’’. Phys. Rev. E 94(1), 016101 (2016)

    Article  ADS  Google Scholar 

  21. A.K. Gupta, Collective dynamics on a two-lane asymmetrically coupled TASEP with mutually interactive Langmuir kinetics. J. Stat. Phys. 162(6), 1571–1586 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Parmeggiani, T. Franosch, E. Frey, Totally asymmetric simple exclusion process with Langmuir kinetics. Phys. Rev. E 70(4), 046101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Chou, G. Lakatos, Clustered bottlenecks in MRNA translation and protein synthesis. Phys. Rev. Lett. 93(19), 198101 (2004)

    Article  ADS  Google Scholar 

  24. T.L. Blasius, N. Reed, B.M. Slepchenko, K.J. Verhey, Recycling of kinesin-1 motors by diffusion after transport. PLoS ONE 8(9), 76081 (2013)

    Article  ADS  Google Scholar 

  25. L. Ciandrini, I. Neri, J.C. Walter, O. Dauloudet, A. Parmeggiani, Motor protein traffic regulation by supply-demand balance of resources. Phys. Biol. 11(5), 056006 (2014)

    Article  ADS  Google Scholar 

  26. M.R. Evans, Y. Kafri, K.E. Sugden, J. Tailleur, Phase diagrams of two-lane driven diffusive systems. J. Stat. Mech: Theory Exp. 2011(06), 06009 (2011)

    Article  Google Scholar 

  27. M. Bojer, I.R. Graf, E. Frey, Self-organized system-size oscillation of a stochastic lattice-gas model. Phys. Rev. E 98(1), 012410 (2018)

    Article  ADS  Google Scholar 

  28. O. Dauloudet, I. Neri, J.-C. Walter, J. Dorignac, F. Geniet, A. Parmeggiani, Modelling the effect of ribosome mobility on the rate of protein synthesis. The European Physical Journal E 44(2), 1–15 (2021)

    Article  Google Scholar 

  29. D. Adams, B. Schmittmann, R. Zia, Far-from-equilibrium transport with constrained resources. J. Stat. Mech: Theory Exp. 2008(06), 06009 (2008)

    Article  Google Scholar 

  30. L.J. Cook, R. Zia, Feedback and fluctuations in a totally asymmetric simple exclusion process with finite resources. J. Stat. Mech: Theory Exp. 2009(02), 02012 (2009)

    Article  Google Scholar 

  31. L.J. Cook, J. Dong, A. LaFleur, Interplay between finite resources and a local defect in an asymmetric simple exclusion process. Phys. Rev. E 88(4), 042127 (2013)

    Article  ADS  Google Scholar 

  32. C.A. Brackley, L. Ciandrini, M.C. Romano, Multiple phase transitions in a system of exclusion processes with limited reservoirs of particles and fuel carriers. J. Stat. Mech: Theory Exp. 2012(03), 03002 (2012)

    Article  Google Scholar 

  33. A. Haldar, P. Roy, A. Basu, Asymmetric exclusion processes with fixed resources: reservoir crowding and steady states. Phys. Rev. E 104(3), 034106 (2021)

    Article  ADS  Google Scholar 

  34. M. Ha, M. Den Nijs, Macroscopic car condensation in a parking garage. Phys. Rev. E 66(3), 036118 (2002)

    Article  ADS  Google Scholar 

  35. P. Greulich, L. Ciandrini, R.J. Allen, M.C. Romano, Mixed population of competing totally asymmetric simple exclusion processes with a shared reservoir of particles. Phys. Rev. E 85(1), 011142 (2012)

    Article  ADS  Google Scholar 

  36. S.A. Janowsky, J.L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process. Phys. Rev. A 45(2), 618 (1992)

    Article  ADS  Google Scholar 

  37. A.K. Verma, A.K. Gupta, Limited resources in multi-lane stochastic transport system. J. Phys. Commun. 2(4), 045020 (2018)

    Article  Google Scholar 

  38. A.K. Verma, A.K. Gupta, Stochastic transport on flexible lattice under limited resources. J. Stat. Mech: Theory Exp. 2019(10), 103210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  ADS  Google Scholar 

  40. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  ADS  Google Scholar 

  41. F. Slanina, Inertial hydrodynamic ratchet: rectification of colloidal flow in tubes of variable diameter. Phys. Rev. E 94(4), 042610 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. F. Slanina, Movement of spherical colloid particles carried by flow in tubes of periodically varying diameter. Phys. Rev. E 99(1), 012604 (2019)

    Article  ADS  Google Scholar 

  43. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. 104(48), 18892–18897 (2007)

    Article  ADS  Google Scholar 

  44. J. Seo, M.H. Lean, A. Kole, Membrane-free microfiltration by asymmetric inertial migration. Appl. Phys. Lett. 91(3), 033901 (2007)

    Article  ADS  Google Scholar 

  45. A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, C.T. Lim, Microfluidics for cell separation. Med. Biol. Eng. Comput. 48(10), 999–1014 (2010)

    Article  Google Scholar 

  46. Y.A. Humenyuk, M. Kotrla, K. Netočnỳ, F. Slanina, Separation of dense colloidal suspensions in narrow channels: a stochastic model. Phys. Rev. E 101(3), 032608 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  47. Y.A. Humenyuk, M. Kotrla, F. Slanina, Continuous and discontinuous waves in an ASEP with pockets. J. Stat. Mech: Theory Exp. 2021(3), 033209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks the Council of Scientific and Industrial Research (CSIR), India, for financial support under File No:09/1005(0028)/2019-EMR-I and AKG acknowledges support from DST-SERB, Govt. of India (Grant CRG/2019/004669 & MTR/2019/000312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Gupta.

Appendices

Appendix A

In this appendix, we provide the explicit calculations and the conditions for the existence of phase boundaries of lattice with multiple-capacity pockets under infinite resources, as discussed in Sect. 4.1.

For \(q=1\), we can re-write the expression for pocket density in Eq. (11) as,

$$\begin{aligned} m= \frac{A}{1+A}, \end{aligned}$$
(A1)

where \(A=\frac{\Omega _{\text {c}}\rho }{\Omega _{\text {d}}(1-\rho )}\). The transition from HD/LD to HD/HD phase (or vice-versa) occurs along the phase boundary capturing HD/MC phase. The pockets must possess the MC phase for the transition mentioned above to occur, and that happens for \(A=1\) only.

Further, for \(q\ne 1\), we utilize \(m*\) in Eq. (57) to obtain the condition of transition from HD/LD to HD/HD phase which is given as,

$$\begin{aligned} qA^{q+2}-(2+q)(A^{q+1}-A)-q=0. \end{aligned}$$
(A2)

For any choice of q, the above equation holds true only for \(A=1\). This proves that all the phase boundaries for the multiple-capacity case are independent of the capacity parameter.

Appendix B: Monte Carlo simulations

In order to support the analytical outcomes based on the mean-field approach, we carry out continuous time Monte Carlo simulations for system size \(L=1000\). Here, we use the random sequential update rule for simulations. A single step of the algorithm involves choosing a random site \(j \in \{1, 2, ..., L\}\) with equal probability and updating it according to the dynamical rules explicitly mentioned in Sect. 2. This procedure is implemented for \(L \times 10^7\) time steps and the first 5% of them are discarded to facilitate the onset of the stationary state. The particle densities from simulations are obtained by averaging its occupation of each site over an interval of 10L. The simulated phase boundaries are computed within an estimated error of less than 1%.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, N., Gupta, A.K. Far from equilibrium transport on TASEP with pockets. Eur. Phys. J. Plus 137, 892 (2022). https://doi.org/10.1140/epjp/s13360-022-03119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03119-2

Navigation