Skip to main content
Log in

Non-equilibrium diffusion characteristics of the particles system and its application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we discuss a possible generalization of the social influences of the Langevin equation. Using a functional method of the Kramers–Moyal expansion coefficients, we prove a simple rule for the corresponding Fokker–Planck equation for a generalized one-dimensional system driven by associated Gaussian noise. We propose here a generalization of the nonequilibrium behavior of the probability density and probability currents induced by different combinations of parameters. In addition, it is interesting to find that the probability of current transport reversal can be obtained by varying the combination of parameters, but the amplitude of the negative and positive currents is controlled by adjusting the interaction coefficient and the intensity factor of the outfield, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Serge Galam, Sociophysics: Cosmos and Chaos in Nature and Culture (Springer, US, 2012)

    Book  Google Scholar 

  2. Parongama Sen, Bikas K. Chakrabarti, Sociophysics: An Introduction (Oxford University Press, Oxford, 2013)

    Google Scholar 

  3. Claudio Castellano, Santo Fortunato, Vittorio Loreto, Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  ADS  Google Scholar 

  4. Amit K. Chattopadhyay, Memory effects in a nonequilibrium growth model. Phys. Rev. E 80(1), 011144 (2009)

    Article  ADS  Google Scholar 

  5. M.A.A. da Silva, J.C. Cressoni, Gunter M. Schutz et al., Non-Gaussian propagator for elephant random walks. Phys. Rev. E 88(2), 022115 (2013)

    Article  ADS  Google Scholar 

  6. Hiroaki Hara, Generalization of the random-walk process. Phys. Rev. B 20(10), 4062–4068 (1979)

    Article  ADS  MATH  Google Scholar 

  7. Gunter M. Schutz, Steffen Trimper, Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70(4), 045101(R) (2004)

    Article  ADS  Google Scholar 

  8. E.T. Jaynes, Bretthorst G. Larry, Probability theory: the logic of science (Cambridge University Press, UK, 2003)

    Book  Google Scholar 

  9. Ernest George Ravenstein, The laws of migration. J. Stat. Soc. London 48(2), 167–235 (1885)

    Article  Google Scholar 

  10. Rudolph Heberle, The causes of rural-urban migration a survey of german theories. American J. Sociol. 43(6), 932–950 (1938)

    Article  Google Scholar 

  11. George Kingsley Zipf, The P1 P2/D hypothesis: on the intercity movement of persons. American Sociol. Rev. 11(6), 677–686 (1946)

    Article  Google Scholar 

  12. Tao Zhou, Xiaopu Han, Xiaoyong Yan et al., Statistical mechanics on temporal and spatial activities of human. J. Univ. Electron. Sci. Technol. China 42(4), 481–540 (2013)

    MATH  Google Scholar 

  13. Guillem Mosquera-Doñate, Marián Boguñá, Follow the leader: Herding behavior in heterogeneous populations. Phys. Rev. E 91(5), 052804 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Katarzyna Sznajd-Weron, Józef. Sznajd, Opinion evolution in closed community. Int. J. Mod. Phys. C 11(06), 1157–1165 (2000)

    Article  ADS  MATH  Google Scholar 

  15. K. Sznajd-Weron, R. Weron, A simple model of price formation. Int. J. Mod. Phys. C 13(01), 115–123 (2002)

    Article  ADS  MATH  Google Scholar 

  16. D. Stauffer, A.O. Sousa, S. Moss de Oliveira, Generalization to square lattice of sznajd sociophysics model. Int. J. Mod. Phys. C 11(06), 1239–1245 (2000)

    Article  ADS  Google Scholar 

  17. B. During, P. Markowich, J.-F. Pietschmann et al., Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 465(2112), 3687–3708 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J.S. Bader, R.W. Hammond, S.A. Henck et al., DNA transport by a micromachined Brownian ratchet device. Proc. Nat. Acad. Sci. 96(23), 13165–13169 (1999)

    Article  ADS  Google Scholar 

  19. Tianshou Zhou, Luonan Chen, Kazuyuki Aihara, Molecular Communication through Stochastic Synchronization Induced by Extracellular Fluctuations. Phys. Rev. Lett. 95(17), 178103 (2005)

    Article  ADS  Google Scholar 

  20. Martin Bier, Astumian R. Dean, Biasing Brownian motion in different directions in a 3-State fluctuating potential and an application for the separation of small particles. Phys. Rev. Lett. 76, 4277–4280 (1996)

    Article  ADS  Google Scholar 

  21. Astrid Haljas, Romi Mankin, Ako Sauga et al., Anomalous mobility of Brownian particles in a tilted symmetric sawtooth potential. Phys. Rev. E 70(4), 41107–41107 (2004)

    Article  ADS  Google Scholar 

  22. Chunhua Zeng, Hua Wang, Yonggang Wei et al., Anomalous transport controlled via potential fluctuations. Phys. A: Stat. Mech. Appl. 392(11), 2623–2630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. La Cognata, D. Valenti, A.A. Dubkov et al., Dynamics of two competing species in the presence of Lévy noise sources. Phys. Rev. E 82(1), 011121 (2010)

    Article  ADS  Google Scholar 

  24. Keiko Yokoyama, Hiroyuki Shima, Keisuke Fujii et al., Social forces for team coordination in ball possession game. Phys. Rev. E 97(2), 022410 (2018)

    Article  ADS  Google Scholar 

  25. Sébastian. Grauwin, Pablo Jensen, Opinion group formation and dynamics: Structures that last from nonlasting entities. Phys. Rev. E 85(6), 066113 (2012)

    Article  ADS  Google Scholar 

  26. Basil S. Bayati, Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model. Phys. Rev. E 93(5), 052124 (2016)

    Article  ADS  Google Scholar 

  27. Dirk Helbing, Péter. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  ADS  Google Scholar 

  28. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  ADS  Google Scholar 

  29. G. Köster, F. Treml, M. Gödel, Avoiding numerical pitfalls in social force models. Phys. Rev. E 87(6), 063305 (2013)

    Article  ADS  Google Scholar 

  30. Guillaume Deffuant, David Neau, Frederic Amblard et al., Mixing beliefs among interacting agents. Adv. Complex Syst. 03, 87–98 (2000)

    Article  Google Scholar 

  31. M. Suman Kalyan, G. Anjan Prasad, V.S.S. Sastry et al., A note on non-equilibrium work fluctuations and equilibrium free energies. Phys. A: Stat. Mech. Appl. 390(7), 1240–1247 (2011)

    Article  Google Scholar 

  32. Trieu Mai, Abhishek Dhar, Nonequilibrium work fluctuations for oscillators in non-Markovian baths. Phys. Rev. E 75(6), 061101 (2007)

    Article  ADS  Google Scholar 

  33. Ushnish Ray, Garnet Kin-Lic. Chan, David T. Limmer, Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics. Phys. Rev. Lett. 120(21), 210602 (2018)

    Article  ADS  Google Scholar 

  34. Yinxia Han, Jinghui Li, Shigang Chen, Effect of asymmetric potential and gaussian colored noise on stochastic resonance. Commun. Theor. Phys. 44(8), 226–230 (2005)

    Article  ADS  Google Scholar 

  35. Hannes Risken, Fokker-Planck Equation for Several Variables; Methods of Solution. (Springer, Berlin Heidelberg, 1996), 44(8), 133–162

  36. Horst Siebert, Economic Growth and Environmental Quality. (Springer, Berlin Heidelberg, 1992) 8, 233–247

  37. Emil Georgiev, Emil Mihaylov, Economic growth and the environment: reassessing the environmental Kuznets Curve for air pollution emissions in OECD countries. Lett. Spat. Resour. Sci. 8(1), 29–47 (2014)

    Article  Google Scholar 

  38. Victor Brajer, Robert W. Mead, Feng Xiao, Health benefits of tunneling through the Chinese environmental Kuznets curve (EKC). Ecol. Econ. 66(4), 674–686 (2008)

    Article  Google Scholar 

  39. Abid Rashid Gill, Kuperan K. Viswanathan, Sallahuddin Hassan, The environmental kuznets curve (EKC) and the environmental problem of the day. Renew. Sustain. Energy Rev. 81(4), 1636–1642 (2018)

    Article  Google Scholar 

  40. Dimitra Kaika, Efthimios Zervas, The environmental kuznets curve (EKC) theory. Part B: Crit. Issues Energy Policy 62, 1403–1411 (2013)

    Google Scholar 

  41. P.P. Li, P.M. Hui, Dynamics of opinion formation in hierarchical social networks: Network structure and initial bias. Eur. Phys. J. B 61(3), 371–376 (2008)

    Article  ADS  MATH  Google Scholar 

  42. André A. Moreira, Demétrius R. Paula, N. Raimundo et al., Competitive cluster growth in complex networks. Phys. Rev. E 73(6), 065101 (2006)

    Article  ADS  Google Scholar 

  43. Angel Stanoev, Daniel Smilkov, Ljupco Kocarev, Identifying communities by influence dynamics in social networks. Phys. Rev. E 84(4), 046102 (2011)

    Article  ADS  Google Scholar 

  44. Sung-Guk. Han, Jaegon Um, Beom Jun Kim, Voter model on a directed network: Role of bidirectional opinion exchanges. Phys. Rev. E 81(5), 057103 (2010)

    Article  ADS  Google Scholar 

  45. V. Schwammle, M.C. González, A.A. Moreira et al., Different topologies for a herding model of opinion. Phys. Rev. E 75(6), 066108 (2007)

    Article  ADS  Google Scholar 

  46. V.A. Avetisov, A.V. Chertovich, S.K. Nechaev et al., On scale-free and poly-scale behaviors of random hierarchical networks. J. Stat. Mech. Theory Exp. 2009(07), P07008 (2009)

    Article  Google Scholar 

  47. Hanyin Xia, Jinghui LI, Chenshi Gang, Flux for a system with infinite globally coupled oscillators driven by temporal-spatial noises. Commun. Theor. Phys. 40(12), 665–668 (2003)

    ADS  Google Scholar 

  48. Hermann Haken, Synergetics (Springer, Berlin Heidelberg, 1983)

    Book  MATH  Google Scholar 

  49. C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95(15), 190602 (2005)

    Article  Google Scholar 

  50. J.M. Sancho, M. Miguel, D.. Dürr. San, Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28(2), 291–305 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. G. Szabó, Tânia. Tomé, István Borsos, Probability currents and entropy production in nonequilibrium lattice systems. Phys. Rev. E 82(1), 011105 (2010)

    Article  ADS  Google Scholar 

  52. Roland Bartussek, Peter Reimann, Peter Hnggi, Precise Numerics versus Theory for Correlation Ratchets. Phys. Rev. Lett. 76(7), 1166–1169 (1996)

    Article  ADS  Google Scholar 

  53. Marcelo O. Magnasco, Forced thermal ratchets. Phys. Rev. Lett. 71, 1477–1481 (1993)

    Article  ADS  Google Scholar 

  54. N.V. Agudov, A.N. Malakhov, Decay of unstable equilibrium and nonequilibrium states with inverse probability current taken into account. Phys. Rev. E 60(6), 6333–6342 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. A. Lubk, A. Béché, J. Verbeeck, Electron Microscopy of Probability Currents at Atomic Resolution. Phys. Rev. Lett. 115(17), 176101 (2015)

    Article  ADS  Google Scholar 

  56. M.J. Kazemi, H. Hashamipour, M.H. Barati, Probability density of relativistic spinless particles. Phys. Rev. A 98(1), 012125 (2018)

    Article  ADS  Google Scholar 

  57. Shigang Chen, Non-equilibrium statistical mechanics (Science press, Beijing, 2010)

  58. P. Reimann, C.V.D. Broeck, R. Kawai, Nonequilibrium noise in coupled phase oscillators. Phys. Rev. E 60, 6402–6406 (1999)

    Article  ADS  Google Scholar 

  59. P. Reimann, R. Kawai, C. Van den Broeck et al., Coupled Brownian motors: Anomalous hysteresis and zero-bias negative conductance. Europhys. Lett. 45(5), 545 (1999)

    Article  ADS  Google Scholar 

  60. Tianfu Gao, Jincan Chen, The current transport characteristics of a delayed feedback ratchet in a double-well potential. J. Phys. A: Math. Theor. 42(6), 065002 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. G.A.O. Tianfu, Yue Zhang, Jincan Chen, The current characteristics of two-state flashing ratchets composed of two asymmetric potentials. Mod. Phys. Lett. B 22(30), 2967–2978 (2008)

    Article  ADS  MATH  Google Scholar 

  62. Suman Kalyan Maity, T. Venkat Manoj, Animesh Mukherjee, Opinion formation in time-varying social networks: The case of the naming game. Phys. Rev. E 86, 036110 (2012)

    Article  ADS  Google Scholar 

  63. Feng Shi, Peter J. Mucha, Richard Durrett, Multiopinion coevolving voter model with infinitely many phase transitions. Phys. Rev. E 88, 062818 (2013)

    Article  ADS  Google Scholar 

  64. William Pickering, Chjan Lim, Solution of the multistate voter model and application to strong neutrals in the naming game. Phys. Rev. E 93, 032318 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12001015 and 11861003), the Natural Science Foundation of Ningxia (2021AAC03206), the First-Class Disciplines Foundation of Ningxia in China (Grant No. NXYLXK2017B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Li, C., Wang, P. et al. Non-equilibrium diffusion characteristics of the particles system and its application. Eur. Phys. J. Plus 137, 874 (2022). https://doi.org/10.1140/epjp/s13360-022-03049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03049-z

Navigation